From Speech-to-Spatial: Grounding Utterances on A Live Shared View
with Augmented Reality

Yoonsang Kim Divyansh Pradhan

Devshree Jadeja Arie E. Kaufman

Center for Visual Computing, Stony Brook University

SUPPLEMENTARY MATERIALS

On this page, we illustrate any details that can further support the
claims of our main manuscript. The following details are support-
ing arguments of our research. Optional, but can be found valuable.

1 System Design and Implementation
1.1 Linguistic Attributes Parsing

Upon the reception of a spoken instruction, Speech-to-Spatial first
transcribes the audio input, and parses the resulting text to extract
its linguistic attributes. We decompose the utterance into intrinsic
object descriptors (e.g., object name, appearance features)-Direct
Feature, optional anchor references, relational cues (e.g., left, be-
hind, on top of)-Relation, and contextual modifiers such as Activ-
ity or Memory-relevant phrases (e.g., “the one we used earlier”)—
Memory. This parsing step converts free-form natural language
into a set of normalized representation to be assigned to our object-
centric graph representation in later steps. To achieve this, we
prompt to an LLM agent to parse and summarize, while instruct-
ing it to prevent any mal-modification to the original information.
We share the core part of our pseudo-prompt:

You are a spatial reasoning assistant. You are given a
transcribed user query.

Parse the query to extract its linguistic attributes without
altering the original meaning.

1) Identify the TARGET OBJECT being referred to.
For the target object, extract:
- label: the primary noun or object type (use null if
underspecified).
- description: intrinsic attributes describing the object
(e.g., color, size, shape, material, texture, pattern,
functional modifiers).
- memory: references to prior interactions with the object.
Each memory entry includes:
- action: the verb describing the interaction.
- description: a short phrase describing the interaction
context.

2) Identify any ANCHOR OBJECTS used to describe the target.
For each anchor object, extract:
- label: the primary noun or object type.
- description: intrinsic attributes describing the anchor.
- relation: the spatial relationship between the target and the
anchor
(e.g., left_of, right_of, above, below, in_front_of, behind_of)

- memory: references to prior interactions associated with the
anchor
(same structure as target memory) .

3) Extract spatial relational cues explicitly stated in the query
and associate them with the corresponding target-anchor
pairs.

4) Extract contextual modifiers related to prior interactions or
temporal references
(e.g., earlier, last week, we used before).

5) Preserve the original intent and wording of the query.
Do NOT infer missing information, add attributes, or resolve
ambiguity.

[Example]
Query: The green box next to the blue sphere with stripes that we

used last week

Parsed Output:

{
"target": {
"label": "box",
"description": "green",
"memory": []
i
"anchors": [
{
"label": "sphere",
"description": "blue with stripes",
"relation": "next_to",
"memory": [
{
"action": "used",
"description": "used last week"
}
1
}
]
}

1.2 3D Object Detection and Recognition

As illustrated in Fig. 1, the visual captures of the physical envi-
ronment are generated into 3D pointcloud (as GLB), along with
object detection of Gemini 2.5-Flash (open-vocabulary). Gemini
2.5-Flash is given the RGB 2D image capture, and are instructed to
detect any objects up to 10 with their individual bounding box. If
the target description was provided, the description is summarized
to list the objects contained in the descriptions, and be localized to
only those target objects. Upon return, the bounding box is asso-
ciated with our 3D point cloud to derive the 3D location of each
localized object. We share the core part of our pseudo-prompt:

You are given an image from an AR user’s viewpoint.

1) Localize up to 10 objects.
2) For each object, return:
- label (shortest form of class name)
- visual descriptions (list of short phrases: color, size,
shape, texture/material/patterns, visible text)
- bounding box (ymin, xmin, ymax, xmax)
3) Return a concise description of the scene (up to 3 sentence).

1.3 Object-centric Graph Building

The object-centric graph is constructed using the visual attributes
(Sec. 1.2), first. Each detected object in the scene is instantiated as a



Figure 1: lllustration of 3D pointcloud generation steps. We use
RGB+D (A, B-Small box at the bottom right indicates Depth im-
age) image captures to generate 3D point clouds (C) and associate
the transformational information with the detected/class instance of
Gemini 2.5-Flash. We adapt the data collection pipeline of Explain-
able XR [2].

graph node, where each node contains its intrinsic visual attributes,
including object label/class, features, 6DoF pose, timestamp, and
a textual description of its surroundings. Then, the spatial relation
is mapped with a graph assigned with one of the 6D relation types
(e.g., left, right, above, below, in-front-of, behind-of) if two object
are within the proximity threshold radius (r=50cm). These relation
connect physical spatial properties to logical (code-level).

Next, upon any linguistic input such as “The water bottle next
to a cookie”, the instance ‘water’ (target) and ‘cookie’ (anchor) is
mapped to the matching (or most highest similar) node class with
the class/label, ‘water’ and ‘cookie’ in the logical graph. Also, the
interaction history as well as action (if any) is recorded onto the ob-
ject on the graph, allowing Speech-to-Spatial to capture both spatial
relations of objects in the real-world and the linguistic attributes.

1.4 Graph Traversals and Reasoning

Prior to the graph traversal, we proceed by gradually narrowing the
candidate referents, within our object-centric graph. Given a parsed
intrinsic attribute description, the system first compares the current
linguistic descriptions against the stored/existing graph nodes us-
ing cosine similarity in the embedding space (we use OpenAl’s
text-embedding-3-small model). Only the nodes with similarity ex-
ceeding a threshold (thresh=0.65) are retained as initial candidates
as a list. These candidates are further filtered using contextual con-
straints, whether their space, activity, interaction history aligns with
the current utterance. The descriptions of the user’s space and ac-
tivity, are generated in Sec. 1.2 via Gemini 2.5-Flash and GPT-4.1
API calls. The last filtering occurs at the client’s perspective-level.
The existing graph nodes that have the bounding volume outside the
current viewing frustum are removed, as well as occlusion compu-
tation (Refer to the main paper). This reduced set of nodes enable
our graph traversal more optimal, before iterating through each can-
didate graph nodes.

We traverse the graph not from a single entry, but rather from
the filtered candidate nodes. By iterating each candidate node and
verifying whether its neighboring nodes satisfy any of the Relation
condition (if any), the candidate node is included in the final poten-
tial target list. If there is a conflict in the list, or multiple targets
satisfy the conditions, we employ our fall-back mechanism where
Full transcription is visualized to the user, minimizing the confu-
sion the instructed user may have from an incorrect inference. If
there is only single most plausible referent, we generate a visual
indicator on top of the referent (Sec. 1.5).

1.5 AR Visual Guidance Anchoring

At the last stage of our pipeline, AR visual pointer is gener-
ated. This is instantiated on the client’s AR device (via Unity AR
Foundation—AR anchor) at the center point of the 3D position of the
target object to which the verbal instruction was referring. In ad-
dition, the transcribed text of the instruction is generated on top of
the visual indicator. The orientation of the indicator is transformed
to face towards the user, for a better visibility.

Wove the cube we moved before to the empty space to the
right of the starred blue cube.

A 4°

~ 23 -9

/]

Figure 2: The in-app capture of the user study view. The eight virtual
cubes represent the target of reference of given verbal instructions.
A participant conducting Move (Top) and Locate (Bottom) Task under
Full condition. The environment was registered and scanned prior to
the study.

2 Evaluation
2.1 Study Setup

Our evaluation study validating the quantitative and qualitative
gains and losses of Speech-to-Spatial was conducted on the lab
desk settings across the participants (Fig. 2). The physical scene
scanning for AR, anchoring of contents, and registration were per-
formed prior to the user study.

2.2 Synthetic Instructions

To maintain a consistent environment across the participants (uni-
form tone/emotion/pace of given speech instructions), and hypothe-
size the scenario of remote instructions, we used the OpenAl’s Text-
to-Speech model (gpt-4o-mini-tts). The voice were pre-generated
and saved. Examples of the synthesized Al instructions include:
“Hammer the cube to the left of the puple cube we moved before”
(Locate Task with Chained speech pattern), “Hammer the red cube”
(Locate Task with Direct Feature), or “Move the cube to the left of
the blue cube to the empty space to the right of the starred green
cube.” (Move Task with Relational pattern). The participants were
given the instructions to perform the tasks (Locate, Move) upon the
completion of the Al-generated voice, verbal instructions. Every
task was given a single instruction.

2.3 Effects Per Referencing Pattern

Locate Task: For a well-specified, single-anchor language (Direct
Feature, Relational), Summary yielded a clear time advantage over
Audio (even over Full), with the largest gains when the utterance
includes Relational or Memory-based pattern.

The median times of Direct Feature were : Audio 3.42s,
Full 3.04s, Summary 2.13s (Friedman y2=18.11, p <.001;
Summary<Audio, p < .001; Summary<Full, p < .001). Summary
sped up the task completion time by 38% vs Audio and 30% vs Full.

For Relational, the medians were : Audio 3.19s, Full 2.79s, Sum-
mary 2.06s (Friedman x> = 17.44, p < .001; Summary<Audio,
p < .001; Summary<Full, p= .012; Full<Audio, p = .048), and
the Summary was 35% faster than Audio and 26% faster than Full.

Full also outperformed Audio Memory-based pattern: Au-
dio 3.21s and Summary 1.89s (Friedman y? = 14.78, p < .001;



Summary<Audio, p = .003; Summary<Full, p = .001). The Sum-
mary cut task completion time by 41% vs Audio and was also faster
than Full.

The Chained pattern reaped: Audio 7.21s, Full 6.63s, Sum-
mary 5.97s (Friedman y% =14.78, p < .001; Summary<Audio,
p < .001; Summary<Full, p=.006). Summary reduced the time
by 17% vs Audio, and 10% vs Full.

Move Task: Summary reduced time in every pattern and was espe-
cially effective for Memory and Chained language, where relation-
al/temporal context is key. It also yielded the strongest accuracy
gains when Memory cues were involved.

The median times of Direct Feature were : Audio 7.05s,
Full 5.69s, Summary 5.08s (Friedman x> =14.78, p <.001;
Summary<Audio, p < .001; Full<Audio, p = .012). Summary was
28% faster than Audio and 11% faster than Full, and Full was faster
than Audio.

For Relational, the medians were : Audio 7.69s, Full 5.67s, Sum-
mary 4.66s (Friedman y% =16.78, p < .001; Summary<Audio,
p < .001; Full<Audio, p < .001), and the Summary was 39% vs
Audio and 18% vs Full; Full also outperformed Audio.

Memory-based pattern: Audio 7.41s, Full 6.20s, and Sum-
mary 4.71s (Friedman xz =21.01, p<.001; Summary<Audio,
p <.001; Summary<Full, p<.001). Summary delivered the
largest gains, 36% vs Audio, and 24% vs Full. This was also where
accuracy benefited most overall. Summary improved accuracy from
0.644 (Audio) t0 0.731 (+13.5%).

The Chained pattern reaped: Audio 12.32s, Full 10.74s, Sum-
mary 8.99s (Friedman y2 =4.33, p=.115; Summary<Audio,
p =.017). Summary sped up performance by 27% vs Audio and
16% vs Full; Summary vs Audio remained significant.

For accuracy, Summary gains the largest (Summary>Audio,

=.025; Summary>Full, p=.020), in Memory-based referenc-
ing (0.82, 0.83, 0.99; Audio, Full, Summary, respectively).

3 Limitation and Future Works

In this section, we extend the discussion on technical limitations
and future work plans of Speech-to-Spatial.

3.1 Advancement of Reasoning LLMs and Graphs

We treat our object-centric graph more than an intermediate rep-
resentation. It is a persistent memory bank that can retain object
attributes and interaction histories across time. As LLM reason-
ing capabilities improve, we expect the “reasoning layer” to be-
come increasingly capable of resolving under-specified speech with
fewer hand-crafted heuristics. However, even with the advance-
ment of capable reasoning LLMs, the need for structured mem-
ory remains. Maintaining information persistently across sessions,
providing transparent reasoning (what gets remembered, when, and
why), and interpretability of how a referent was resolved. A practi-
cal next step, would be formalizing our current approach as a graph
framework where LLMs issue structured graph queries (filter, tra-
verse, verify) similar to SQL queries, enabling the system to benefit
from improved LLM models, while keeping the memory transpar-
ent and human-readable.

3.2 Agentic Architecture

Our pipeline currently executes a query, sequentially: Parse, Re-
trieve, Resolve, and the AR Overlay. And these are based on
hand-crafted heuristics. In our future work, we envision Speech-to-
Spatial to integrate the agentic pipeline, where the decision making
is automated by the system reasoning agents, while maintaining the
user agency (verification upon ambiguity) and transparency of our
interaction history-projected graph representations.

3.3 Defining the Boundary of Referent Proximity

Our current spatial relation modeling simplifies the “Left” or
“Right” relationships into discrete booleans using a fixed constant
threshold (radius=50cm). If the two objects are outside the defined
radius, we assume the two are not adjacent to each other. How-
ever, in practical scenarios, the definition of “to the left” or “to the
right of” vary per person and by the granularity the explanation re-
quires. For example, wayfinding instructions, to locate in a city, the
context of “next to” is different from explaining the mouse “next to”
the keyboard. To this end, we plan to explore the context-dependent
(e.g., instruction type, distance) variation of thresholding.

3.4 Information Overload

We currently convert the textual descriptions into vector embed-
dings during the save, and traverse through each node following
a filtering step based on a (cosine) similarity threshold. However,
the latency will proportionately increase to the size of the incoming
data. To address this challenges, we plan to apply similar tech-
niques as GraphRAG [1], where a hierarchical information (com-
munity) forms an abstraction before iterating through the nodes
with high semantic similarity.

3.5 Instance Detection and Tracking

Our current prototype assumes a simplified instance identity logic.
If an object appears in view within the same space, it is treated as
the same instance. This approach may not always succeed, when
multiple similar objects exist, objects are rearranged, or sensing is
intermittent. A more robust instance management may be required
for re-identification across viewpoints, and sessions using a combi-
nation of appearance, geometry, and interaction history, and object
tracking. We plan to adopt this approach in our future work.

REFERENCES

[1] D. Edge, H. Trinh, N. Cheng, J. Bradley, A. Chao, A. Mody, S. Truitt,
and J. Larson. From local to global: A graph rag approach to query-
focused summarization. arXiv:2404.16130, 2024. 3

[2] Y. Kim, Z. Aamir, M. Singh, S. Boorboor, K. Mueller, and A. E. Kauf-
man. Explainable xr: Understanding user behaviors of xr environments
using llm-assisted analytics framework. /EEE TVCG, 2025. 2



	System Design and Implementation
	Linguistic Attributes Parsing
	3D Object Detection and Recognition
	Object-centric Graph Building
	Graph Traversals and Reasoning
	AR Visual Guidance Anchoring

	Evaluation
	Study Setup
	Synthetic Instructions
	Effects Per Referencing Pattern

	Limitation and Future Works
	Advancement of Reasoning LLMs and Graphs
	Agentic Architecture
	Defining the Boundary of Referent Proximity
	Information Overload
	Instance Detection and Tracking


