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Figure 1: Concept illustration of Speech-to-Spatial, disambiguating verbal descriptions of a referent and situating AR visual guiders
leveraging object-centric graph, and LLM-based reasoning in a remote assistance scenario.

ABSTRACT

We introduce Speech-to-Spatial, a referent disambiguation frame-
work that converts verbal remote-assistance instructions into spa-
tially grounded AR guidance. Unlike prior systems that rely on
additional cues (e.g., gesture, gaze) or manual expert annotations,
Speech-to-Spatial infers the intended target solely from spoken ref-
erences (speech input). Motivated by our formative study of speech
referencing patterns, we characterize recurring ways people specify
targets (Direct Attribute, Relational, Remembrance, and Chained)
and ground them to our object-centric relational graph. Given an ut-
terance, referent cues are parsed and rendered as persistent in-situ
AR visual guidance, reducing iterative micro-guidance (“a bit more
to the right”, “now, stop.”) during remote guidance. We demon-
strate the use cases of our system with remote guided assistance and
intent disambiguation scenarios. Our evaluation shows that Speech-
to-Spatial improves task efficiency, reduces cognitive load, and en-
hances usability compared to a conventional voice-only baseline,
transforming disembodied verbal instruction into visually explain-
able, actionable guidance on a live shared view.

Index Terms: Speech, Spatial Interface, Remote Collaboration,
Spatial Referencing, Augmented Reality, Large Language Models.
1 INTRODUCTION

Remote assistance often relies on spoken instructions [14], which
are ambiguous when designating referents. Prior works show that
language alone is insufficient, and phrases such as “this one” or
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“over there” remain under-specified unless paired with embodied
cues such as gesture or gaze [1,2,27,40]. Recent studies demon-
strate that combining verbal and visual cues, aided by LLMs, en-
hances the clarity of verbal descriptions [28,41,64]. Beyond ges-
ture, relational context also grounds meaning: ontology-driven ap-
proaches model multi-dimensional attributes such as space, time,
activity, actor, and object [34], and relational priors and scene
graphs yield dense, spatially consistent reconstructions [53]. These
works suggest that ambiguity can be reduced through structural
analysis of how entities relate both spatially and semantically.

While graphs and multimodal cues clarify communication, eX-
tended Reality (XR) collaboration introduces practical challenges.
Visualizing embodied gestures or remote users’ avatars requires
specialized hardware such as motion tracking and immersive Head-
Mounted Displays (HMDs). These requirements slow the adoption
of immersive solutions in remote technical support, where prac-
titioners often fall back to 2D displays, hand-held device-based
communication, or manual cursor annotations. Other domains em-
ploy chatbot-style Al with no direct human-to-human assistance
or embodied presence. These constraints underline the need for
lightweight approaches that can operate in speech-only conditions.

We propose Speech-to-Spatial to address these challenges.
Speech-to-Spatial is a framework that grounds verbal-only instruc-
tions into Augmented Reality (AR) visual guidance (Fig. 1). Build-
ing on the existing literature on the ambiguity of spatial expres-
sions and our formative study, we categorize four recurring referen-
tial types — Direct Feature-based, Relational, Memory-based, and
Chained. Speech-to-Spatial reconstructs a relational graph, maps
spoken references, and auto-generates AR indicators that disam-
biguate spatial descriptions. This transforms transient utterances
into persistent, spatially contextualized guidance—without requiring
additional gear, cues, or manual human annotations.

We showcase the use cases of Speech-to-Spatial across three col-

laborative scenarios: Remote maintenance instructions, Indoor nav-
igation, and Al personal assistance. Our evaluation shows measur-



able gains in task efficiency, accuracy, reduced cognitive load, and
heightened usability for Speech-to-Spatial, compared to the voice-
only assistance baseline. Our contributions are as follows:

* An end-to-end pipeline for speech disambiguation We
elucidate the intent behind speech-only instructions using
graph-traversal reasoning and provide situated visual guid-
ance through an AR indicator.

* Spatial description patterns in remote instructions We de-
rive five recurring language patterns in spatial descriptions
(Direct-feature, Relational, Memory, Chained, and Deictic),
stemmed from established studies of Language.

* Demonstration on collaborative scenarios We showcase the
applications of Speech-to-Spatial-Maintenance, Navigation,
and Personal assistance, and its potential.

Empirical evaluation We assess and compare the perfor-
mance of Speech-to-Spatial-cognitive load and usability over
an existing remote assistance baseline (voice-only), with im-
plications for integration into existing methods.

By unraveling the ambiguities of verbal interaction in remote
assistance and automatically enriching the channel of communi-
cation by providing additional visual guidance, Speech-to-Spatial
advances remote assistance beyond disembodied voice interfaces
toward spatially grounded and visually explainable experiences.

2 RELATED WORK
2.1 Remote Assistance and Information Sharing

Remote assistance for procedural tasks has relied on phone or video
calls with verbal instructions. While videos provide basic visibil-
ity, they lack shared spatial grounding, making it hard to identify
precise referents or actions [14]. AR and MR research have in-
troduced in-view overlays and annotations to reduce miscommu-
nication [23]. Embedding step-by-step instructions into AR views
improved correctness in maintenance tasks [45, 54]. Surveys fur-
ther confirm that MR-based remote assistance reduces task errors
and increases efficiency [17]. In remote AR guidance, augment-
ing visual content (e.g., avatar, view-point ray, gestures, pointers)
onto the physical realm has shown to facilitate information com-
munication and collaboration [18,20,33,50,59,69]. Another set of
work shows the use of gestures to enrich data communication—for
presentations [4] as well. Yet, many commercial platforms remain
dominated by 2D desktop or mobile interfaces, relying on manual
pointers or cursors even with the use of AR, and human-authored
annotations for grounding [14, 63, 68].

This motivates Speech-to-Spatial to bridge the gap between
manual-annotated AR remote assistive technology and conven-
tional speech-only remote guidance. We aim to automatically
disambiguate spatial referencing in verbal descriptions using an
LLM and a graph-structured reasoning pipeline, enriching a single-
channel (verbal) remote guidance to a dual-channel (visual, verbal).

2.2 Spatial Referencing in Spoken Language

Prior works have established that spatial language contains state-
ments that refer to objects with respect to a reference frame [42,
43, 62], and have shown that people adopt different perspec-
tives and frames of reference—viewer-centered, object-centered, or
environment-centered—and that mismatches can cause misunder-
standings [5,30,57]. Taylor and Tversky indicate that spatial de-
scriptions are inherently perspective-dependent [66]. In wayfind-
ing scenarios, where only the objects near the user are visible, the
viewer and the environment-centered (Cardinal directions—North,
East, West, South) expressions were used. In contrast, when a
scene can be perceived within a single viewpoint, object-centered
spatial referencing was more prevalent (e.g., “Object A to the right
of Object B”). Recent interactive and Al systems adopt the object-
centered spatial expressions, by pairing language with visual cues

to indicate target referents [9, 11,26, 31]. Target (the referred ob-
ject) and Anchor (the figural object used to refer to the Target)
attributes (e.g., color, size, shape), relational language, and sur-
rounding visual context further support disambiguation of refer-
ents [7, 13,28, 58]. These intriguing language patterns of spatial
descriptions, and their use cases suggest that explicit spatial anchor-
ing and relational structure play a role in resolving under-specified
spoken references.

We motivate our object-centered graph representation from these
human spatial description patterns, and use a multimodal LLM to
interpret ambiguous target references during remote assistance. As
a visual guidance system that situates instructions onto a referred
target, we extend a verbally-instructed guidance to visual commu-
nication, enabling robust grounding and disambiguation.

2.3 Multimodal Cues and Disambiguation

The seminal work, “Put-That-There” [2], established how speech
and gesture interrelate each other and treat deictic terms as tem-
porary variables grounded by pointing to spatial targets. Recent
systems extend this principle to visualization and XR domains by
fusing embodied cues. Han and Issac leverage deictic references
(e.g., this, that, here, there) to enrich interaction for visual ana-
lytics [24]. GazePointAR employs a gaze and gesture-aware per-
sonal assistant to disambiguate under-specified spoken queries in
real-time [40]. GesPrompt uses the synchronization between the
temporal dimension, speech, and co-speech gestures, to capture
richer spatial-temporal intent [27]. Bovo et al. revisits the “Put-
That-There,” paradigm for XR information placement with scene
semantics and head and pointing cues to interpret under-specified
commands [3].

Recent works leverage LLM agents to bind multimodal context
(visual, audio, gesture, interaction history) to reason over spatial
context [24,40,41,47,64,70], and automate grounding. While the
fusion of context can mitigate the ambiguity, such techniques as-
sume reliable tracking of gaze, gesture, avatars, or increased sens-
ing computations. Rather than relying on embodied sensing with
additional cues, Speech-to-Spatial treats speech as the sole instruc-
tor channel (lightweight) and resolves ambiguity through a struc-
tured referent reasoning pipeline, then generates visual overlays
that approximate the disambiguating role of embodied cues.

2.4 Intelligent Grounding in XR

Recent work integrates scene understanding and language models
to automate grounding. Guided Reality demonstrates how LLMs
and vision models generate visually-enriched task cues embedded
into the scene [70]. Complementary works on dialogue augmen-
tation [8] and XR-Objects [12], explore embedding relational se-
mantics from conversation into situated overlays. In parallel, re-
lational scene representations including scene graphs, are increas-
ingly leveraged to capture multi-object relationships and support
grounding beyond single entities [9, 15, 32, 38,53, 55]. These 3D
graphs provide hierarchical structure, enabling more transparent re-
lationship predictions than neural representations. ConceptGraphs
utilize open-vocabulary detector and scene graphs, enabling sys-
tems to query using relational prompts or identify targets [22].
These threads demonstrate the use of multimodal LLM-driven
context-aware reasoning. Speech-to-Spatial builds on this trajec-
tory, but focuses on the intricacy of verbal descriptions in remote
instructions. We ground a speech signal into lightweight, AR an-
chored visualizations, without requiring additional modalities.

2.5 Memory, Recall, and Situatedness

Visual grounding extends beyond task performance into the do-
mains of long-term memory and recall. Research indicates that
pairing speech with visual cues improves information retention and
reduces errors. Specifically, Lukianova et al. found that images
paired with text in AR instructions, significantly boost recall over



text-only conditions. Visual information is processed by the brain
more efficiently than linguistic tokens due to their natural seman-
tics over learned symbols [48]. Situated visualization studies also
show how context-bound representations support recollection and
decision-making [6,21,36]. In AR, spatial markers further support
task switching and resumption by visually situating attention and
helping users return to a spatial context even after task interrup-
tion [49]. Memory-oriented systems explore how interaction histo-
ries can be captured and reused [56,61]. Memoro memorizes prior
dialogue to support verbal remembrance nudging [72]. OmniQuery
extends this idea by connecting visual memory with other contex-
tual cues for information search and retrieval [46].

These works suggest that situated persistent memory traces can
be used for longer-term usability and spatial reasoning. Speech-
to-Spatial builds on this by treating every referent as incremental
semantic memory. That is, every action and relationship between a
user and a referent is stored as a memory. By maintaining an object-
centric interaction history within a 3D knowledge graph, Speech-to-
Spatial can trace prior instructions and context, enabling effective
disambiguation of under-specified spatial descriptions.

3 DESIGN OF SPEECH-TO-SPATIAL FRAMEWORK
3.1 The Need for Referent Disambiguation in Speech

The core challenge in remote assistance is communication clarity.
The meaning of an expert’s instructions must be quickly under-
stood and acted upon for a collaboration to be successful. However,
conventional remote support solutions rely on an asymmetric setup
where a local worker streams a visual feed while a remote expert
provides speech-only guidance. Since spatial language is inherently
ambiguous, this triggers repeated back-and-forth to clarify the in-
tended target and what action should be taken. Recent approaches
(e.g., video calls with marking tools or AR tele-assistance) partially
address this by enabling experts to add visual annotations, but these
cues are typically created manually, adding extra burden.

Speech-to-Spatial aims to address this communication bottle-
neck by designing a disambiguation layer that clarifies the referent
behind the remote expert’s spoken instruction. We aim to remove
the burden of manual visual annotations by introducing an auto-
mated disambiguation pipeline based on speech, and transforming
the expert’s speech into spatially grounded visual indicators.

3.1.1 Understanding the Language Pattern in Speech
Guided Remote Assistance

We ground our analysis in established perspectives on spatial ref-
erence frames drawn from prior literature: viewer-centered, object-
centered, and environment-centered [5, 30,42, 43,57, 62,66]. To
understand how these perspectives manifest in remote assistance,
we examine the recurring linguistic strategies and communication
patterns that arise when an expert guides a worker through verbal
instructions. We conduct a preliminary formative study of remote
verbal instructions with a shared screen view to mimic a remote as-
sistance setting. The insights derived from the study will inform
the design of Speech-to-Spatial, a framework that disambiguates
the spoken spatial references of target objects in remote instructions
and produces visual+speech-supported guidance.

The core aim of the formative study was to analyze the emerging
spatial description patterns during remote instructions as the first
step, and to base this insight on the design of Speech-to-Spatial,
and evaluate the effectiveness of our combined approach with AR.

3.1.2 Study Setup and Procedure

We recruited 9 participants (academic researchers, engineers, and
students; 8 male, 1 female; aged 27-34; P1-9), paired as instruc-
tor (giving directions) and follower (executing them). P1 volun-
teered to be the designated follower across all sessions (P2-9 being
instructors). A 15-minute session with 30 instructions was con-
ducted remotely via Zoom [71] with 2D screen sharing as the shared

workspace. The follower was instructed to follow commands liter-
ally (dull following), without interpretation, and respond only min-
imally to the instructor for confirmation. This was to observe and
classify spoken patterns of each single turn (a single-trip: query-
and-response) conversation, as a multi-turn conversation is a com-
posite that involves more than one single-turn conversations with
prior conversation context. The first author (of this research) ob-
served silently, recording transcripts and notable referring expres-
sions. After each session, participants were interviewed about their
strategies and difficulties based on the author’s session notes. The
notes were categorized into high-level themes (Sec. 3.1.3).

The tasks were designed as an instruction-following activity on a
shared desktop view. The 2D screen of the follower was shared with
the instructor, representing a remote assistance scenario. For each
trial, the instructor was privately informed of the randomly cho-
sen target, ranging from an empty folder to an existing file/icon on
the Desktop. The instructor, then, guided the follower to select the
item by moving their mouse cursor. To avoid inevitable ambiguity
from the non-distinctive feature of a target, the follower was asked,
before the study, to create a set of empty folders on their desktop,
each named with a unique single letter in the English alphabet. This
setup ensured that the instructor always had the freedom to choose
any referencing method to refer to a target, without indirectly con-
verging on using a specific referencing method. The first 15 tasks
were performed (1) without access to the annotation tool, enforc-
ing speech-only communication, and the other 15 were performed
(2) with annotation enabled to examine any shift in participants’
strategies upon access to the annotation tool.

3.1.3 Findings and Implications

The study revealed four outstanding patterns of spatial reference,
which we thematically coded as Direct Feature, Relational, Mem-
ory, and Chained references, following similar groupings of spa-
tial linguistic expressions: Using figural/landmark objects to de-
scribe a scene [52, 65, 66], describing target features [52], using re-
lational/relative descriptions [19,44], referring back to previously
interacted targets [10,42,66], and deictic references [43]. We also
observe the use of deictic referencing (e.g., “that”, “it”) when the
drawing/annotation tool was enabled. We report the total occur-
rence of each pattern across all tasks, not only the initial descrip-
tions (e.g., “click the pdf file”), but including the recovery attempts
(e.g., “No, one to the right of it”’). One task may involve one or more
patterns. The patterns are based on our observation notes (N=187).

Direct Feature. The instructor at-

tempted to describe the target di-

rectly (57.6%) through its intrinsic at- Target
tributes and features in their initial tri- @
als. This includes references to dis-

tinct attributes such as the color (“the

red file”), type (“the PDF file”), or la-
bels (“the file named A”). Direct Fea-
tures were effective when the distinguishing attribute was conspic-
uous. However, when multiple items shared similar features (e.g.,
similar-colored folders), instructors added additional descriptions,
or shifted to other referencing techniques, suggesting that feature-
based references provide an important baseline, yet, are fragile for
target reference on its own.

Relational. When Direct Feature ref- Target
erencing was insufficient, the partici-
pants used this type (31.2%). It uses
an anchor referent/object that is more
conspicuous and acts as a landmark to
the target. Phrases such as “the one to A
the left of the yellow file.” Relational
referencing allowed instructors to dis-

(to the lef of)
N
) Anchor




ambiguate targets even when features overlapped, but it required the
follower to correctly identify the anchor object first. When the fol-
lower still failed to identify the anchor, the instructor resorted back
to guiding the follower’s mouse cursor as the anchor point. For
example, “move a little more to the left” or “to your right” (micro-
guidance). The prevalence of this pattern indicates the importance
of modeling spatial relations.

Memory. Participants used prior Target
knowledge to indicate an anchor ref-

erent (a distinct referent to indicate S .,/(Previously
the target) (/1.2%). This pattern selected)
refers back to the objects that had
been mentioned or manipulated ear-
lier in the session, the short-term
shared knowledge between the in-
structor and the follower. An example phrase could be: “the file
we previously selected”. This strategy highlights how the an-
chor point in referring a target object is not limited to an ob-
ject’s distinct attributes, but can also be based on the shared ex-
perience the two collaborators engaged in. This shared experi-
ence then becomes a resource for grounding cues as well. How-
ever, one of the participants indicated that the Memory pattern
caused them additional cognitive overhead, as they tried to recall
their interaction history. This referencing motivates our system
design to retain interaction history as part of the grounding step.

Chained. This is a composite pattern.
In a single utterance, it layers Direct
Feature, Relational, and/or Memory-
based cues. For instance: “the folder
behind the one we selected earlier”
(Relational, Memory). These refer-
ences emerged when the description
complexity of the anchor or target in-
creased, or when initial guidance attempts failed. While effective,
an elongated chain of instructions was reported to frustrate both
the follower and the instructor, often leading them to merely fol-
low mouse cursor-based micro-guidance. The Chained referencing
pattern illustrates the need for a compositional representation such
as a graph that can integrate cues beyond spatial relations between
referents. Its statistics are broken down into its individual patterns.

(Behind of) Target

Deictic. This pattern was the most
prominently used with the visual an-

notation tool. For example, “that Target
one”, “it” (while visually marking the «
target). However, this pattern is de- “that” Ll

.. L
pendent on additional cue such as A ‘
visual indication or explicit gesture

pointing [2, 27, 40]. As we disam-
biguate solely on speech cue, we consider this pattern as out of
our scope, and discuss in our future work discussion (Sec. 6).

3.2 Design Rationale

Our formative study validated that the linguistic spatial patterns es-
tablished in (Sec. 2.2) also emerge in remote verbal guidance sce-
narios. These descriptions relied on (1) visual features or attributes
of objects, (2) relations among entities, and (3) shared interaction
context. We use a graph representation that retains these patterns
and supports structured interpretation and reasoning over referred
targets in spoken instructions. Leveraging this representation, we
disambiguate the referred target in speech instructions of remote
assistance and project AR guidance onto the resolved referent for
explicit visual guidance. We detail the design considerations for
our framework in the following:

Spatial representation for referent resolution. A referent-
centered 3D spatial representation that can retain its own attributes

(e.g., 6DoOF transformation, color, size, shape), and provide a way
to connect and traverse other neighboring referents. The structure
must be able to represent the three spatial expressions (Direct,
Relational, and Chained).

[D2] Retain prior interaction context. The spatial representation
not only retains what attributes an entity/referent has, but also the
temporal grounding (interaction history—-Memory). The system
must be able to retrieve the prior activities applied to each referent
in a form of an episodic memory.

End-to-end generation of visual indicator. To address the
adoption barrier of manual annotation, the system must convert
referential language into a concrete spatial output automatically.
This requires an end-to-end pipeline that maps utterances to can-
didate referents and emits an explicit visual indication, reducing
reliance on repeated verbal clarification.

Lightweight instrumentation. To remain practical across
diverse AR deployment settings, the referent disambiguation from
a verbal instruction, must not require any additional embodied
cues (e.g., gaze, gesture) or hardware-specific dependencies, while
capturing comprehensive context about the user (e.g., space, time,
activity, intent, referent) [29, 35,39].

In designing Speech-to-Spatial, we treat speech as an expres-
sive specification of referential intent, and convert it into automatic
anchored visual guidance to make spatial grounding attainable in
lightweight settings without additional cues such as gaze or ges-
tures. We aim to disambiguate a target from verbal expressions,
into visually grounded guidance using graph-based reasoning with
an LLM and AR, enriching remote communication beyond manual
visual annotations with verbal instructions.

3.3 System Implementation

System Overview. Speech-to-Spatial follows an end-to-end work-
flow: (1) spoken instructions are transcribed and interpreted; (2) the
target, anchor (if applicable), and the descriptions of each object are
parsed; (3) an object-centric graph is constructed from the visible
objects and referents ((D1]); (4) attributes per node are assigned
from the visible features; (5) the referred object is assigned with
its requested interaction history ((D2]); and (6) an augmented visual
overlay is situated onto the physical environment ((D3]), without
necessitating other cues beyond speech ((D4)).

At the core of Speech-to-Spatial lies the object-centric graph.
It allows every visible physical object to retain multi-dimensional
attributes—space, time, action, intent, and actor—capturing the his-
tory of interactions, while also encoding its own feature descrip-
tors (e.g., color, shape), and spatial relations between neighboring
objects. This persistent object-based representation supports the
integration of the four referencing patterns and facilitates the dis-
ambiguation of object references during remote verbal communi-
cation. The pipeline is illustrated in Fig. 2. Please refer to our
Supplementary Material for more implementation details.

Implementation Environment. We offload the computation over-
head from the client’s device (via a client-server architecture). On
the client’s device, Unity AR Foundation was used, and we use a
custom Python server for the reasoning backend. Unity handles the
visual capture, voice recording, 6DoF pose extraction of objects,
and AR anchoring of contents. Objects are represented internally
as JSON nodes before being incorporated into the object-centric
graph on the server. Speech is transcribed using Whisper [16], and
utterance parsing, reasoning, and resolution are handled by GPT-
4.1, followed by the text-embedding-3-small model, which gener-
ates the embeddings for object attributes. Gemini 2.5-Flash was
used to localize, segment, and classify objects, and perform visual
analysis of the scene. Embeddings of object attributes are cached
and reused for optimality.
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3.3.1 Remote Instruction Parsing and Attribute Extraction

When Speech-to-Spatial receives a spoken instruction, it parses
the utterance into a pre-defined structure with an LLM. The
structure encodes the linguistic dimensions: {targerobject}, one
or more {anchorobject}, their respective object {class/label},
{description/ features}, a {relational phrase}, and any {action},
{intent}, or {temporal} cues. As shown in Fig. 3, “The black ther-
mos above the Quest 3 box, next to the Poland spring water we
talked about a minute ago” yields the target node (“thermos”), the
anchor node (“box”), associated with the attributes of each node,
and their Direct Feature, Relational, and Memory-based relation-
ship. Generic nouns such as “thing”, or “it” are not treated as a
target label or description, but rather as the question of the referent.

3.3.2 Object-centric Relational Graph Construction

Upon the first encounter with a scene and the localization of an ob-
ject, we build a relational graph, mapping the logical node-object
to the physical object (Fig. 4). The graph is retained across AR
sessions enabling users to permanently refer back to their prior in-
teractions with the objects. Speech-to-Spatial bypasses the graph
construction step once it already holds a representation of the scene.

Object Detection and Segmentation. We localize the visible
objects in the captured snapshot via a vision-capable LLM. It is
prompted to localize all visible objects, as well as to extract their
descriptive features (e.g., color, class-label, shape). Specifically, we
guide the LLM to localize the parsed target and anchor objects.

Graph Construction. Once objects in a scene are localized, and
their features are extracted, a relational graph is constructed. Every
localized physical object is registered as a logical node in the graph,
and the nodes are connected by spatial relationships between their
neighboring nodes. The spatial graph is constructed using the six
spatial relational properties: “left”, “right”, “above”, “below”, “in-
front-of”, and “behind-of”. We define an object to be “in relation”
to another only when it is within a half-meter radius (r=50cm). The
3D center point of a localized node, derived from the axis-aligned
3D bounding box of a target object, is used to determine the spatial
relation between objects, for simplicity.

Assigning Attributes to Graph Nodes. We assign identified fea-
tures (e.g., color, class-label) of each object extracted from earlier
steps, to logical node attributes and its spatial context (the descrip-
tion of the overall scene the objects are in; e.g., “Desk with laptop
and coffee on the side.”). Then, we initialize each graph node with
an empty memory field (Fig. 3), which binds the temporal footprint
and action/intent history of user(s) when an interaction occurs.
The ontology-driven structures [15, 22, 34, 53] have shown that
graphs can preserve explicit relations and histories, ensuring that
references are resolved through paths that remain interpretable and

explainable, unlike flat vector-based representations. By combining
the concept of a scene graph with multi-context—space, time, actor,
action, intent [29, 35, 60]-we represent spatial relationships across
objects as well as their interaction histories and context.

3.3.3 Referent Inference and Reasoning

Compositional and Chained Reasoning. Speech-to-Spatial re-
solves utterances that involve multiple dimensions of reference.
Each node in the object-centric graph consists of not only what the
object is, but also where it is, what has been done to it, and when;
on top of the spatial relationship between its neighboring objects.
With the integration of relational, spatial, temporal, action, and
intent-based dimensions, the graph supports compositional reason-
ing across multiple anchors and chained references. For instance,
“the cube behind the sphere and in front of the machine” can be re-
solved by intersecting relational paths from the two anchor nodes,
while “the bolt next to the panel we fixed earlier” requires travers-
ing both spatial and temporal-action histories.

Semantic Embeddings and Attribute Matching. Relational prop-
erties are fixed to six terms (e.g., two of which are “leff” and
“right”). However, Direct Feature (‘label’, ‘description’ in Fig. 3)
or Memory-based referencing rely on descriptive language, not
constrained to a set of pre-defined vocabularies. To handle this vari-
ability, Speech-to-Spatial computes semantic similarity between
each graph node and the parsed attributes of the target/anchors (co-
sine similarity between vectors). We select the top five candidate
nodes (k = 5) with highest attribute description similarity, while
satisfying relational and memory attribute alignment. Then, we per-
form an LLM-based reasoning to pinpoint the referred node. The
first-pass semantic similarity node filtering, not only reduces the
input context counts passed to the LLM in the final step, but also
provides robustness to linguistic variation in referents beyond Bag-
of-Words or naive keyword matching.

Viewpoint-aware Candidate Filtering. Speech-to-Spatial em-
ploys object-level frustum and occlusion-culling of object nodes,
to minimize the similarity computation checks of candidate nodes
in the graph. Similar to the culling techniques in graphics engines,
only the nodes that are in view are retained, while those outside are
discarded. Then, naive occlusion culling is performed by casting an
AR ray (physical surface depth checks) to the known object-node
position, for depth-testing following the pseudo-code:

if (Dg > Dp + Agcare) then: occluded
(where A = cam_to_obj_dist, B = ray_hit_dist,
Ascale = target _obj_scale)
At the end of the reasoning pipeline, we employ a fallback mecha-
nism in the case of conflicting target referencing or reasoning fail-
ures. We leverage an evaluation LLM agent to verify whether the
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Figure 3: Attribute parsing: Transcribed text of verbal instructions is
extracted into a structure via LLM.

final candidate referent satisfies all the conditions without ambigu-
ities. Upon conflict, it falls back to the raw transcription anchoring,
instead of a visual pointer to avoid any uninformed guidance.

3.3.4 Capturing Interaction History

Retaining Action Footprints. A central principle of Speech-to-
Spatial is that memory is not an auxiliary log but an integral part
of the graph itself. Each node accumulates a persistent history of
interactions: the actions taken (e.g., “moved”, “rotated”), the actors
involved, and the temporal footprint of those actions. By storing
these directly onto object-nodes, Speech-to-Spatial ensures that ref-
erences such as “the panel we looked at yesterday” or “the folder we
opened earlier” can be naturally resolved by traversing temporal-
action attributes. This approach turns every object into a site of
accumulated memory, anchoring its evolving state across time.

Revisability of Object-nodes. The object nodes of the graph are
preserved across sessions. However, the attribute of an object can
be updated through a user interaction. When an object is trans-
formed, moved, or altered, Speech-to-Spatial updates its attributes
in place. This interaction ‘Action’ is recorded in the interaction
history of the object-node, and is appended to its existing inter-
action data. This supports the Memory-based referencing pattern,
enabling the recall of a referent based on prior interactions.

3.3.5 Anchoring and Visualizing Indicator

AR Visual Indicator Anchoring. Once a referent is identified
through graph traversal reasoning, Speech-to-Spatial generates an
AR visual indicator to situate the instruction in the physical envi-
ronment. We anchor a directional arrow pointer directly above the
identified object-node, ensuring that the referent is immediately vis-
ible to the remote user. This anchoring is persistent until an action
(e.g., “moving”) has been performed to the referent.

Instruction Summarization and Step Ordering. On top of the vi-
sual indicator, Speech-to-Spatial overlays an AR instruction panel
generated by an LLM. The utterance is summarized into a con-
cise action description, such as‘“tighten the bolt” or “open the left
panel”. When multiple steps are parsed from the instruction se-
quence, the system presents them in an alphabetically ordered list
(e.g., A,B,C), guiding the user through the required operations in
order. This summarization clarifies the required action with intent,
reducing the cognitive burden of parsing long-utterance tasks.

Misguidance Avoidance. In cases where Speech-to-Spatial fails
to interpret the instructions—involving conflicting conditions or loss
of nuances in summarization, Speech-to-Spatial alternatively dis-
plays the raw transcription of the spoken instruction without the
auto-generated visual pointer, as a safe fallback mechanism. This
enables Speech-to-Spatial to avoid presenting any misleading vi-
sual pointers, passing control over to the users for their interpre-
tation (maintaining user-agency). This approach preserves fidelity
to the original input while ensuring that users retain control when
automation falls short. This design maintains the system fail-safe.

Anchoring a visual indicator completes our “Speech-to-Graph-
to-Overlay” pipeline. The arrow indicator provides spatial ground-
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Figure 4: Object-centric relational graph: Each object maintains a
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ing, while the textual overlay delivers actionable guidance. To-
gether, they transform remote verbal instructions into a spatial indi-
cator that disambiguates the object-of-interest and clarifies actions.

4 UsEe CASES AND APPLICATIONS

We illustrate how Speech-to-Spatial operates across the applica-
tions of Remote maintenance, Navigation, and Personal assistance,
emphasizing its ability to provide clarity in conversations, preserve
context, and reduce ambiguity in the topic of discussion. Each case
demonstrates how referent disambiguation can transform under-
specified speech queries into spatially guided instructions (Fig. 5).

4.1 Case Study 1: Speech-based Visual Annotation

In modern remote collaborative maintenance platforms (e.g.,
TeamViewer Assist AR [67], or Microsoft Dynamics 365 Remote
Assist/Teams [51]), a remote expert supports the technician in
the field primarily through spoken instructions while observing a
shared video feed. Other platforms provide annotation tools that
allow experts to label regions in the view. Yet, verbal description
is the primary source of assistance, and visual annotation requires a
human expert to manually indicate the target as well. With Speech-
to-Spatial, an utterance (e.g., “locate the second fuse from the left,
Jjust below the green wire”) is parsed into an object-centric graph,
and the remote instructor’s referent is automatically disambiguated
and indicated with a visual overlay. This transformation provides
the technician with unambiguous, visual directions, without requir-
ing manual effort to visually indicate the referred target.

4.2 Case Study 2: Mapping the Speech to Visual Map

When describing the route to a destination, directions are conveyed
step by step, combining landmarks and relational anchors (“walk
straight until you see the entrance, and turn left”). Such instruc-
tions require the listener to maintain a mental drawing of the route,
assembling each fragment into an imagined plan of the environ-
ment. While natural in daily conversations, this approach can be
difficult to follow in unfamiliar or complex spaces, where the ac-
curacy of remembering each segment is critical. Speech-to-Spatial
can convert the verbal directions into a situated visual guidance us-
ing AR. Instead of relying on the user’s “mental map,” from the ver-
bal explanation, users can visualize the directions. The wayfinding
experience becomes easier to follow and transparent. The overlay
makes clear what the speaker meant by “entrance” or “left,” reduc-
ing the likelihood of misunderstanding, in spoken instructions.

4.3 Case Study 3: Disambiguating the Query-of-interest

Speech-to-Spatial is useful in verbally conversing with a personal
Al assistant (e.g., Gemini) as well. Here, the spoken communica-



Figure 5: Three use case scenarios of Speech-to-Spatial. (A) Remote Maintenance; (B) Indoor Navigation; and (C) Personal Al assistant.

tion can introduce ambiguity in identifying the intended referent.
The user may refer to Referent A, but the Al may misinterpret it
as Referent B, providing an incorrect response to the user’s query.
Speech-to-Spatial can mitigate this by providing a visual indicator
(e.g., a dot indicating the object-of-interest [40]) after receiving
the speech input. Furthermore, this capability suggests a potential
pathway towards the transformation of a customer-service Al chat-
bot into a visually grounded agent that can visually guide (on top
of speech/textual) even with a single shared snapshot capture.

5 EVALUATION

We evaluate Speech-to-Spatial as a referent disambiguation mech-
anism that converts verbal remote instructions into spatially
grounded AR guidance, by resolving the intended referent and pro-
viding a visual indicator. Our evaluation consists of two parts. (1)
End-to-end impact: we first test whether grounding speech-only
instructions into AR guidance with Speech-to-Spatial, improves
user performance compared to a conventional voice-only baseline
(Sec. 5.1) and (2) the feasibility of our mechanism: we analyze the
spoken instructions and interaction traces logged during our open-
ended study to quantify how reliable our mechanism resolves the

intended referent (Sec. 5.2).

5.1 User Evaluation: Quantifying the Impact
5.1.1 Study Setup and Procedure

Participants. We recruited 18 participants (12 male, 6 female, aged
22-34). All participants were either Full Professional Proficiency
(N=4) or Native (N=14) in English. The 7-point Likert scale indi-
cating prior familiarity with XR systems (1:None; 7:Experienced)
varied widely (u=2.7, 6=1.2), but the participants were not exposed
to the task or conditions prior to the experiment. The participants
(P1-P18) were compensated with a $15 gift card.

Apparatus. Participants were given a Meta Quest3 MR HMD
(passthrough mode) with its controller, to participate in the study.
The HMD was to provide a controlled testbed across participants
that ruled out any arm fatigue concerns (e.g., Gorilla Arm Effect)
that may arise from a hand-held AR device, and allow users to per-
form tasks with hands (hands-free), under a practical remote as-
sistance workflow (“receive-instructions-and-execute”). The spa-
tial layout of the physical scene and the eight virtual cubes (mock
physical referents) were registered and anchored prior to the study.
To maintain uniform study conditions, the coordinate system was
synchronized across sessions, and the study was conducted on the
same desk settings in a lab (refer to Suppl. Material).

Procedure and Measures. Participants were given a cube inter-
action task under three conditions with different modalities (each
modality is labeled, a ‘block’): (1) Audio (spoken instructions only;
denoted “Audio”); (2) Audio+Visual Indicator+Full transcription
(verbatim instruction displayed; denoted “Full”’); (3) Audio+ Visual
Indicator+Summarized transcription (condensed directive above a
target referent; denoted “Summary”). Note that the speech-only
condition (1-Audio) is our baseline, and 2—Full and 3—Summary,
use Speech-to-Spatial to disambiguate instructions and provide

spatial guidance (generated before the study). Within each block,
participants complete four sub-blocks consisting of three trials,
each covering one of four spatial referencing patterns (Sec. 3.1.1).

Every user action was logged to derive task completion time, ac-
curacy, and interaction traces. After each sub-block, participants
filled out a 0-100 scaled RTLX (Raw TLX; Unweighted NASA-
TLX) and a Single Ease Question (SEQ). After each modality
block, they completed another RTLX for overall experience as-
sessment. A post-study questionnaire was given to collect over-
all user experience, followed by a semi-structured interview. The
study conditions and tasks were presented in a counterbalanced
order to mitigate sequence effects. Also, to maintain consistent
motor factors (pinch, hand gestures), participants were instructed
to start the task at the same designated location, and the target
cubes were repositioned to maintain an equal distance of 35cm
(Distancepand 1o sarger)- All instructions were delivered as Al-
synthesized speech to avoid between-speaker prosody effects, and
the audio was played at the beginning of every trial. When the
sub-block referencing pattern type is “Memory-based,” users were
shown to remember that this is “the cube referred by the memory”.
Each of the eight cubes was textured uniquely. We collected a to-
tal of 1,296 trials across all participants (3 blocks x 3 trials x 4
sub-blocks x 2 task types x 18 participants), excluding a 20-minute
functionality familiarization phase (tutorial).

Tasks. The tasks simulated remote guidance scenarios, where par-
ticipants were verbally guided to select a target cube among distrac-
tors, with instructions balanced across reference styles (each trial is
given a single task). Each participant was given equal aggregated
counts of trials and tasks:

* Locate: Identify and select a target cube among distractors
by hitting it with a virtual hammer mapped to the Quest con-
troller. The task hypothesizes a “find” instruction, given a
description (e.g., “Locate the purple striped cube’).

* Move: Move a specified cube from its current location to
a designated target position on the desk. The action is per-
formed using a pinching gesture (bare-handed). The scenario
hypothesizes a remote-assisted task that involves transforma-
tion of an on-site object. The task is considered complete once
a cube was selected and moved to any position (e.g., “Move
the red cube to the left of the blue dotted cube’).

In Audio, instructions were delivered verbally with no additional
cues mimicking traditional speech-only remote guidance. In Full,
the spoken instruction was displayed verbatim above the target with
an arrow. For Summary, the instruction was condensed into a con-
cise directive and displayed alongside the arrow. We conduct a
within-subject study with these hypotheses: (H1) Speech-to-Spatial
will disambiguate instructions and improve clarity than the base-
line; (H2) Summarized instructions will be the top choice; (H3) The
advanced task (Move) will have higher demand for disambiguation.

5.1.2 Results
We report our findings at three levels computed for each Task:

Overall effects across all trials, Modality/block-level comparisons,
and Effects on the performance for each referencing pattern. For
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each block, we perform a repeated measures ANOVA test (when
normality held), or Friedman followed by Bonferroni-corrected
pairwise tests (or Wilcoxon signed-rank) with effect sizes. We use
Shapiro-Wilk for normality checks. For each section and task, we
summarize the insights, and provide statistical grounds behind them
(as the tasks involve different levels of complexity and motor).

Task Completion Time and Accuracy. In both tasks, the
disambiguated-instruction conditions (Full, Summary) reduced
completion time without harming accuracy compared to Audio. The
accuracy of Locate was near maximum under all conditions with
only the visual guidance time varying. For Move, they significantly
improved both speed and accuracy, with Summary providing the
strongest benefits, and Full not showing a strong trend with Audio.

Locate: the median completion time (ascending sorted) for the
conditions was: Summary 3.25(+0.53)s, Full 4.08(+0.40)s, and
Audio 4.33(£0.41)s. Friedman test showed significance across
conditions on Time (x2 =21.00, p < .001), and pairwise com-
parison indicated: Summary<Audio (p < .001), Summary<Full
(p < .001). Full,sAudio did not show any significance. Accuracy
was: Summary 0.998(+0.001), Full 0.991(+0.027), and Audio
0.986(+0.032). No significance was found among conditions.

Move: this task requires more complex reasoning (iden-
tify and move). The mean completion time were: Summary
6.33(£1.07)s, Full 7.94(£1.22)s, and Audio 9.31(%+2.28)s. Con-
ditions significantly affected time (y2 = 20.33, p < .001), with
Summary<Full<Audio (p < .05). Accuracy of Full and Sum-
mary also improved over Audio: Summary 0.731(£0.061), Full
0.676(£0.137), and Audio 0.644(£0.130), (x> = 8.04, p < .018).
A Wilcoxon signed-rank test showed: Summary>Audio (p < .020),
while no other conditions were found to be significant. This indi-
cates that Summary improves both speed and accuracy.

Perceived Difficulty. Disambiguated guidance (ours) reduced per-
ceived difficulty (higher: more difficult) robustly for the Move task,
while the Locate task showed non-significance. Difficulty was mea-
sured with a 0-to-100 scale (0:Low; 100:High).

Locate: the difficulty of each condition in ascending or-
der: Summary 26.39(£23.01), Full 28.19(£24.04), and Audio
30.97(+19.61), did not reap any significance.

Move: showed significance (RM-ANOVA F(2,34) =7.85,
p<.05 with  Full,;Audio  (post-hoc  p = .020), and
Summary,Audio (post-hoc p =.016). The difficulty of each
condition was: Summary 33.47(1+24.54), Full 34.72(+23.13), and
Audio 45.14(£17.60).

Perceived Confidence. The perceived confidence in answers in-
creased with Summary significantly higher than Audio, in Move.
Locate did not exhibit any significant trend. Confidence was mea-
sured with a 0-to-100 scale (0:Low; 100:High).

Locate: No significance among conditions was found. Each con-
dition scored: Full 89.17(%+13.09) Summary 88.89(411.48), and
Audio 81.94(+18.70).

Move: Confidence in the answer of each condition was:

Summary  88.89(£11.12) Full 85.56(+15.30), and Au-
dio 77.64(£20.89). Showing significance (RM-ANOVA
F234) =5.61, p <.01) for Summary,;Audio (post-hoc p = .036).

Cognitive Workload. Interestingly, Full had lower average load
than Summary in Mental Load and Effort, across both tasks. While
it did not reap any significance between Summary and Full, Full
showed lower mean than even Summary. Only for the Move task
did both the spatial guidance (Full, Summary) reduced mental de-
mand as well as effort, relative to Audio. The Locate task did not
show any statistically meaningful pattern. Each load was measured
with a 0-to-100 scale (0:Low; 100:High).

Locate: Mental demand and Effort were: Full 23.19(+23.62),
Summary 27.36(£25.60) , Audio 30.69(£20.25), and Full
22.08(£19.50), Summary 25.97(+22.48), Audio 29.31(+18.49).

Move: Mental demand and Effort were: Full 32.22(1+24.16),
Summary 34.31(£27.93), Audio 47.22(+£20.45), and Full
33.06(£22.70), Summary 34.31(£23.79), Audio 46.53(£17.62),
respectively. It shows significance (RM-ANOVA F(; 34) =7.80,
p <.01) on Full,;Audio (post-hoc p=.006) for Mental de-
mand, and Effort also shows significance (RM-ANOVA
F(2134) =9.72, p<.001) in Full,sAudio (post-hoc p =.005),
and Summary,Audio (post-hoc p = .013).

Effects Per Referencing Pattern. We examine how referencing
patterns (Direct Feature, Relational, Memory, Chained) shape per-
formance within each task (Locate, Move) and by modality (Audio,
Full, Summary). Summary consistently shortened completion time
relative to Audio across all patterns and tasks, and it also showed
better results than Full for Relational, Memory, and Chained speech
patterns. The effect is largest whenever the utterance requires cross-
object reasoning or recall (Memory, Chained), where the concise
directive appears to reduce parsing effort while the arrow removes
residual spatial ambiguity (Fig. 6). For Accuracy, Locate does not
show a noticeable pattern, while for the Move task, Summary yields
the most gains for Memory-based references. Please refer to Sup-
plementary Material for more analysis.

Usability and Preference. Participants indicated the value of dis-
ambiguated guidance positively, rating (7-point scale) the use of
Summary, at 5.37(£1.26) with 79% rated higher than or equal to
5, and 53% rated higher or equal to 6. The visual reliance com-
pared to Audio was 6.84 vs. 3.16 (ratio). The participants indicated
that the visual anchoring reduces memory burden and expedites ac-
tion “Seeing the arrows made it easier to remember the steps to be
taken” (P3). When asked to rank the preferred mode of assistance,
Summary was ranked highest (N=11), followed by Full (N=6), and
Audio (N=1). “Summary captures key points without overwhelm-
ing detail, and the arrow makes instructions easy to follow” (P5).
The Audio, which is the most common way of remote assistance
in the field, was viewed as insufficient by the participants. “Audio
was less helpful I need to think and remember details” (P11); “After
getting used to the visual one, audio was just distracting.” (PS).

5.2 System Evaluation: Gauging the Feasibility

With the same participants post-study, we assess our framework as
a whole with the participants’ own verbal input. In this session, the
participants were not constrained to any specific tasks, but acted as
both the remote expert (who provided the verbal instructions) and
the local user (who shared the view). An example query can be:
“Locate the phone to the left of the laptop” (while having a phone
and a laptop in sight). This session was conducted to gauge the
raw technical capabilities of our framework. The participants were
instructed to provide any verbal queries and provide open-ended
feedback on their user experience of Speech-to-Spatial.

We collected 81 user query instances along with qualitative feed-
back from the participants. Our analysis indicates that Speech-to-
Spatial successfully processed 77.8% (counts: 63) of total queries,



while 13.6% (11) triggered our fall-back mechanism (Full). The
verbal input contained incorrectly parsed noise or filler utterances
(e.g., “um..”) leading to 8.6% (7) speech recognition errors. Over-
all, the system was commented on positively on its ability to dis-
ambiguate instructions through Full or Summary visualizations
(P1,P3,P4,P9,P10). However, one participant expressed frustra-
tion with the persistent visualization of Full transcriptions (“I don’t
know if it’s the system or me”) (P1). The fail-safe mechanism where
the raw transcription is provided to the user upon conflicts or fail-
ures caused confusion between the system’s reliability and voice
recognition errors. Another participant perceived the same fall-
back behavior as beneficial, noting “fallback helped, it shouldn’t
just fail, at least it shows where it possibly went wrong.” (P9).
Speech-to-Spatial was unable to correctly parse queries involving
unsupported spatial expressions. For example, multi-step spatial
queries (multiple Chaining spatial references): “second to the right
of”, “in between object A and B” (P2), and “what’s next to the one
on the right” (P7). Also, a user view-oriented explanation (“one to
the right of what I'm viewing”) (P17). We extend the discussion on
these limitations in Sec. 6.

6 LIMITATIONS AND DISCUSSION

We demonstrated that our speech disambiguation framework re-
duces task comprehension difficulty, increases task performance,
and performs with reasonable robustness. However, our system
makes a few assumptions in language, sensing, and evaluation
scope. Below we outline key limitations and future work. We ex-
pand our implementation details in the Supplementary Material.

Extended Evaluation Scope. We showed how graph-based refer-
ent disambiguation can convert spoken instructions into grounded
guidance and improve instruction comprehension. However, to bet-
ter reflect practical remote assistance scenarios, we plan to move
beyond lab-controlled, single-turn prompts and synthetically gen-
erated utterances (simple tasks), which may not fully capture the
variability and pragmatics of natural communication (“Some in-
structions were not how 1'd describe things” (P17)—phrases becom-
ing overly convoluted). We plan to derive instruction patterns from
realistic bi-directional assistance session transcripts, and in 3D re-
mote scenarios to observe any behavioral shifts from users, and
conduct a more systematic evaluation with more participants.

Communication Pattern Coverage. We conducted the formative
study to extend the established findings on spatial referencing pat-
terns to a remote assistive scenario, and categorized the recurring
patterns. However, we limit the scope of these patterns to object-
centered referencing. In our studies, we found that users use view-
centered (“object to my left”), or environment-centered (“near the
wall”) referencing strategies as well. Furthermore, our formative
study accounts for only cumulative speech patterns, instead of sep-
arating initial description patterns and recovery attempts (we only
qualitatively report the orderings). We plan to expand the support
of the graph representation beyond object-level, with deeper speech
pattern analysis and their transition strategies. Also, we will ana-
lyze the speech patterns of users, of varying technical background.

Visual Guidance Design Space. Our core novelty lies in disam-
biguating referents from speech. The visual guidance is a byproduct
of referent resolution. However, the effectiveness of this guidance
can depend on how it is represented (dimensionality: 2D, 3D; type:
arrow, circle) [25,70]. Also, limited resolution density and graph-
ics fidelity can reduce text legibility in AR. As a next step, we will
systematically separate and evaluate the design factors, and explore
richer visual encoding (e.g., icon, figures) [45], for a more informed
AR guidance design and improved pipeline.

Importance of Multi-modality. Practical remote assistance situa-
tions include hands-occupied tasks (e.g., holding tools, fixing parts)
where additional manual interaction is undesirable, and speech-

only becomes the most practical channel. This highlights why a
speech-only mode is not simply a weaker interface but a neces-
sary operational mode in certain cases. However, providing addi-
tional cues (e.g., gaze, gesture) strengthens the system’s user con-
text comprehension [27,40,41], enabling it to better assist the user.
In our future work, we will explore adaptive modality switching
strategies [37] based on inferred hand availability and situational
constraints.

Handling Complex Spatial Referencing. Our system showed lim-
itations when confronted with advanced chained expressions that
required multi-step reasoning such as nested or ordinal references
(“in between”, or “second to the left of”’). In addition, our spatial
relations are limited to session axis-aligned 6DoF pose. We plan
to address this with multi-hop reasoning capabilities by iteratively
traversing through nodes for global relational understanding.

Robustness in the Wild. The present implementation assumes syn-
chronized AR session coordinates and reliable sensing, conditions
that are difficult to guarantee in real-world deployments. Further-
more, the spatial references can vary by the captured viewpoint.
The spatial relation of object A (which is on the left of object B)
can shift with the viewer’s perspective. If object A is viewed from
the other side, object A is to the right of object B. These constraints
challenge the scaling of our system beyond laboratory conditions.
We plan to address this by introducing adaptive referencing strate-
gies, capturing the viewpoint of the user upon relational graph ini-
tialization and applying LLM-based spatial reasoning over geomet-
ric position-based spatial layout computation.

User Agency and Transparency. Summarized guidance effec-
tively reduced cognitive demand by distilling lengthy utterances
into concise directives anchored to referents. However, conden-
sation risks omitting semantic nuance that may be essential in com-
plex verbal instructions (33% of the participants preferred Full over
Summary). For future work, we plan to adapt Speech-to-Spatial to
provide a heightened level-of-control on the visual feed of the tran-
scription to the users, as well as providing heightened transparency
into the reasoning process (e.g., failure cause). This will allow users
to adjust the balance between clarity and comfort according to their
task demands, and adjust verbal communication strategies.

7 CONCLUSION

We presented Speech-to-Spatial, a referent disambiguation system
that converts verbal instructions into spatially grounded AR guid-
ance for remote assistance. Motivated by our formative study show-
ing the potential for extending recurring spatial referencing pat-
terns to remote guidance scenarios, Speech-to-Spatial interprets
how people specify targets through speech, and resolves under-
specified references without relying on manual expert annotation
or other cues such as gaze or gesture. We parse instructions into
representative reference types and ground them in an object-centric
relational graph to disambiguate the intended referent, then situate
a visual indicator with a concise directive. Our evaluation showed
that our pipeline makes verbal instructions easier to follow-reduced
completion time, improved accuracy, lowered perceived difficulty,
and workload compared to verbal-only guidance. We also demon-
strated system robustness and broader applicability through case
studies. We suggested that our system can be a lightweight bridge
from verbal to visually explainable, actionable guidance.

8 DATA PRIVACY AND ETHICS

Participants provided informed consent prior to the study, and their
identity was anonymized. Both studies were conducted under the
IRB compliance of Stony Brook University (/173920).

ACKNOWLEDGMENTS

This research was supported in part by NSF award 1152529207 and
ONR award N000142312124.



REFERENCES

[1]

[2]
[3]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

H. Bai, P. Sasikumar, J. Yang, and M. Billinghurst. A user study on
mixed reality remote collaboration with eye gaze and hand gesture
sharing. In Proc. of ACM CHI, pp. 1-13, 2020. 1

R. A. Bolt. “put-that-there” voice and gesture at the graphics interface.
In Proc. of SIGGRAPH, pp. 262-270, 1980. 1,2, 4

R. Bovo, D. Giunchi, P. Cascarano, E. J. Gonzalez, and M. Gonzalez-
Franco. Revisiting put-that-there, context aware window interactions
via llms. arXiv preprint arXiv:2511.02378, 2025. 2

M. Brehmer. Video-conferencing beyond screen-sharing and thumb-
nail webcam videos: Gesture-aware augmented reality video for data-
rich remote presentations. arXiv preprint arXiv:2501.05345, 2025. 2

S. E. Brennan and H. H. Clark. Conceptual pacts and lexical choice in
conversation. Journal of experimental psychology: Learning, memory,
and cognition, 22(6):1482, 1996. 2, 3

N. Bressa, J. Vermeulen, and W. Willett. Data every day: Designing
and living with personal situated visualizations. In Proc. of ACM CHI,
pp. 1-18,2022. 3

N. Carbonell and S. Kieffer. Do oral messages help visual search.
Advances in natural multimodal dialogue systems, 30:131-157, 2005.
2

R. S. M. Chan, A. Marx, A. Kim, and M. El-Assady. A design space
for intelligent dialogue augmentation. In Proc. of IUI, pp. 18-36,
2025. 2

S. Chen, P.-L. Guhur, M. Tapaswi, C. Schmid, and I. Laptev. Lan-
guage conditioned spatial relation reasoning for 3d object grounding.
Neurips, 35:20522-20535, 2022. 2

H. H. Clark and S. E. Brennan. Grounding in communication. In
L. Resnick, L. B., M. John, S. Teasley, and D., eds., Perspectives on
Socially Shared Cognition, pp. 13-1991. APA, 1991. 3

F.1. Dogan, S. Kalkan, and I. Leite. Learning to generate unambiguous
spatial referring expressions for real-world environments. In Proc. of
IEEE/RSJ IROS, pp. 4992-4999, 2019. 2

M. D. Dogan, E. J. Gonzalez, K. Ahuja, R. Du, A. Colaco, J. Lee,
M. Gonzalez-Franco, and D. Kim. Augmented object intelligence
with XR-Objects. In Proc. of ACM UIST, pp. 1-15, 2024. 2

D. dos Santos Silva and I. Paraboni. Generating spatial referring ex-
pressions in interactive 3d worlds. Spatial Cognition & Computation,
15(3):186-225, 2015. 2

R. Druta, C. Druta, P. Negirla, and I. Silea. A review on methods and
systems for remote collaboration. Applied Sciences, 11(21):10035,
2021. 1,2

D. Edge, H. Trinh, N. Cheng, J. Bradley, A. Chao, A. Mody, S. Truitt,
and J. Larson. From local to global: A graph rag approach to query-
focused summarization. arXiv:2404.16130, 2024. 2,5

A. Evgrashin. Whisper for unity. https://github.com/Macoron/
whisper.unity/tree/master, 2024. Aug. 31.2024. 4

C. G. Fidalgo, Y. Yan, H. Cho, M. Sousa, D. Lindlbauer, and J. Jorge.
A survey on remote assistance and training in mixed reality environ-
ments. [EEE TVCG, 29(5):2291-2303, 2023. 2

D. L. Fink, J. Zagermann, H. Reiterer, and H.-C. Jetter. Re-locations:
Augmenting personal and shared workspaces to support remote col-
laboration in incongruent spaces. Proc. of ACM HCI, 6(1SS):1-30,
2022. 2

A. Garnham. A unified theory of the meaning of some spatial rela-
tional terms. Cognition, 31(1):45-60, 1989. 3

J. E. S. Grgnbzk, K. Pfeuffer, E. Velloso, M. Astrup, M. 1. S. Peder-
sen, M. Kjer, G. Leiva, and H. Gellersen. Partially blended realities:
Aligning dissimilar spaces for distributed mixed reality meetings. In
Proc. of ACM CHI, pp. 1-16, 2023. 2

J. Grubert, T. Langlotz, S. Zollmann, and H. Regenbrecht. Towards
pervasive augmented reality: Context-awareness in augmented reality.
IEEE TVCG, 23(6):1706-1724, 2016. 3

Q. Gu, A. Kuwajerwala, S. Morin, K. M. Jatavallabhula, B. Sen,
A. Agarwal, C. Rivera, W. Paul, K. Ellis, R. Chellappa, et al. Concept-
graphs: Open-vocabulary 3d scene graphs for perception and plan-
ning. In Proc. of IEEE ICRA, pp. 5021-5028, 2024. 2, 5

P. Gurevich, J. Lanir, B. Cohen, and R. Stone. Teleadvisor: a versatile
augmented reality tool for remote assistance. In Proc. of ACM CHI,

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]
[43]
[44]

[45]

pp. 619-622, 2012. 2

C. Han and K. E. Isaacs. A deixis-centered approach for documenting
remote synchronous communication around data visualizations. IEEE
TVCG, 2024. 2

D. Hepperle, Y. Weil3, A. Siess, and M. Woélfel. 2d, 3d or speech?
a case study on which user interface is preferable for what kind of
object interaction in immersive virtual reality. Computers & Graphics,
82:321-331, 2019. 9

P. Howlader, H. Nguyen-Canh, S. Das, J. Xu, H. Le, and D. Samaras.
Cora: Consistency-guided semi-supervised framework for reasoning
segmentation. In Proc. of IEEE/CVF WACV, 2026. 2

X. Hu, D. Ma, F. He, Z. Zhu, S.-K. Hsia, C. Zhu, Z. Liu, and K. Ra-
mani. Gesprompt: Leveraging co-speech gestures to augment 1lm-
based interaction in virtual reality. In Proc. of ACM DIS, pp. 59-80,
2025.1,2,4,9

S. Jadon, M. Faridan, E. Mah, R. Vaish, W. Willett, and R. Suzuki.
Augmented conversation with embedded speech-driven on-the-fly ref-
erencing in ar. arXiv preprint arXiv:2405.18537,2024. 1,2

S. Jang, E.-J. Ko, and W. Woo. Unified user-centric context: Who,
where, when, what, how and why. In Proc. of UbiPCMM, 2005. 4, 5

K. Johannsen and J. P. D. Ruiter. Reference frame selection in dialog:
priming or preference?  Frontiers in Human Neuroscience, 7:667,
2013. 2,3

R. Kartmann and T. Asfour. Interactive and incremental learning
of spatial object relations from human demonstrations. Frontiers in
Robotics and Al, 10:1151303, 2023. 2

D. Kim, T. Ha, J. Hong, S. Kim, S. Choi, H. Ko, and W. Woo. Meta-
objects: Interactive and multisensory virtual objects learned from the
real world for use in augmented reality. JEEE CG&A, 45(3):134-143,
2025. 2

H. Kim, E. Hu, and S. Heo. Spaceshare: Leveraging multimodal con-
text for fluid sharing of spaces in video meetings. In Proc. of ACM
UIST-Adjunct, pp. 1-3, 2025. 2

H. Kim, T. Matuszka, J.-I. Kim, J. Kim, and W. Woo. Ontology-
based mobile augmented reality in cultural heritage sites: informa-
tion modeling and user study. Multimedia Tools and Applications,
76(24):26001-26029, 2017. 1, 5

Y. Kim, Z. Aamir, M. Singh, S. Boorboor, K. Mueller, and A. E. Kauf-
man. Explainable xr: Understanding user behaviors of xr environ-
ments using llm-assisted analytics framework. /EEE TVCG, 2025. 4,
5

B. Lee, M. Sedlmair, and D. Schmalstieg. Design patterns for situated
visualization in augmented reality. IEEE TVCG, 30(1):1324-1335,
2023. 3

G. Lee, M. Xia, N. Numan, X. Qian, D. Li, Y. Chen, A. Kulshrestha,
L. Chatterjee, Y. Zhang, D. Manocha, et al. Sensible agent: A frame-
work for unobtrusive interaction with proactive ar agents. In Proc. of
ACM UIST, pp. 1-22,2025. 9

J. Lee, F. Aleotti, D. Mazala, G. Garcia-Hernando, S. Vicente, O. J.
Johnston, I. Kraus-Liang, J. Powierza, D. Shin, J. E. Froehlich, et al.
Imaginatear: Ai-assisted in-situ authoring in augmented reality. In
Proc. of ACM UIST, pp. 1-21, 2025. 2

J. Lee, J. Kim, J. Ahn, and W. Woo. Remote diagnosis of architec-
tural heritage based on Sw1h model-based metadata in virtual reality.
ISPRS 1JGI, 8(8):339, 2019. 4

J. Lee, J. Wang, E. Brown, L. Chu, S. S. Rodriguez, and J. E.
Froehlich. GazePointAR: a context-aware multimodal voice assistant
for pronoun disambiguation in wearable augmented reality. In Proc.
of ACM CHI, pp. 1-20,2024. 1,2,4,7,9

J. Lee, T. Wang, J. Fashimpaur, N. Sendhilnathan, and T. R. Jonker.
Walkie-talkie: Exploring longitudinal natural gaze, llms, and vlims for
query disambiguation in xr. In Proc. of ACM CHI EA, pp. 1-9, 2025.
1,2,9

W. J. Levelt. Cognitive styles in the use of spatial direction terms.
Psychology, 1982. 2,3

W. J. Levelt. Speaking: From intention to articulation. MIT press,
1993. 2,3

S. C. Levinson. Frames of reference and molyneux’s question:
Crosslinguistic evidence. Language and space, 109:169, 1996. 3

C. Li, G. Wu, G. Y.-Y. Chan, D. G. Turakhia, S. Castelo Quispe, D. Li,


https://github.com/Macoron/whisper.unity/tree/master
https://github.com/Macoron/whisper.unity/tree/master

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

L. Welch, C. Silva, and J. Qian. Satori: Towards proactive ar assistant
with belief-desire-intention user modeling. In Proc. of ACM CHI, pp.
1-24,2025. 2,9

J.N. Li, Z. Zhang, and J. Ma. Omniquery: Contextually augmenting
captured multimodal memories to enable personal question answer-
ing. In Proc. of ACM CHI, pp. 1-20, 2025. 3

X. Liu, D. Jia, X. C. Liu, M. Gonzalez-Franco, and C. Zhu-Tian. Real-
ity proxy: fluid interactions with real-world objects in mr via abstract
representations. In Proc. of ACM UIST, pp. 1-16, 2025. 2

E. Lukianova, J.-Y. Jeong, and J.-W. Jeong. A picture is worth a thou-
sand words? investigating the impact of image aids in ar on memory
recall for everyday tasks. In Proc. of IUI, pp. 106-126, 2025. 3

M. N. Lystbzk, K. Pfeuffer, T. Langlotz, J. E. S. Grgnbzk, and
H. Gellersen. Spatial gaze markers: Supporting effective task switch-
ing in augmented reality. In Proc. of ACM CHI, pp. 1-11, 2024. 3

D. Markov-Vetter, M. Luboschik, A. T. Islam, P. Gauger, and
O. Staadt. The effect of spatial reference on visual attention and work-
load during viewpoint guidance in augmented reality. In Proc. of ACM
SUI, pp. 1-10, 2020. 2

Microsoft. Dynamics 365 remote assist. https://learn.
microsoft.com/en-us/dynamics365/mixed-reality/
remote-assist/ra-overview, 2025. Sep. 3. 2025. 6

G. A. Miller and P. N. Johnson-Laird. Language and perception. Har-
vard University Press, 1976. 3

R. Murai, E. Dexheimer, and A. J. Davison. Mast3r-slam: Real-
time dense slam with 3d reconstruction priors. In Proc. of CVPR,
pp. 16695-16705, 2025. 1,2, 5

M. Rebol, C. Hood, C. Ranniger, A. Rutenberg, N. Sikka, E. M. Ho-
ran, C. Giitl, and K. Pietroszek. Remote assistance with mixed reality
for procedural tasks. In Proc. of IEEE VRW, pp. 653-654,2021. 2

A. Rosinol, A. Gupta, M. Abate, J. Shi, and L. Carlone. 3d dynamic
scene graphs: Actionable spatial perception with places, objects, and
humans. arXiv preprint arXiv:2002.06289, 2020. 2

K. A. Satriadi, B. Tag, and T. Dwyer. Context-dependent memory in
situated visualization. arXiv:2311.12288, 2023. 3

M. E Schober. Addressee-and object-centered frames of reference
in spatial descriptions. In American Association for Artificial Intelli-
gence, Working Notes of the 1996 AAAI Spring Symposium on Cogni-
tive and Computational Models of Spatial Representation, vol. 47, pp.
92-100, 1996. 2, 3

S. Schiiz, A. Gatt, and S. ZarrieB. Rethinking symbolic and visual
context in referring expression generation. Frontiers in Artificial In-
telligence, 6:1067125, 2023. 2

J. Seo, I. Avellino, D. P. Rajasagi, A. Komlodi, and H. M. Mentis.
Holomentor: Enabling remote instruction through augmented reality
mobile views. Proc. of ACM HCI, 7(GROUP):1-29, 2023. 2

M. Shakeri, H. Park, I. Jeon, A. Sadeghi-Niaraki, and W. Woo. User
behavior modeling for ar personalized recommendations in spatial
transitions. VR, 27(4):3033-3050, 2023. 5

J. Shen, J. J. Dudley, and P. O. Kristensson. Encode-store-retrieve:
Augmenting human memory through language-encoded egocentric
perception. In Proc. of IEEE ISMAR, pp. 923-931, 2024. 3

A. Shusterman and P. Li. Frames of reference in spatial language
acquisition. Cognitive psychology, 88:115-161, 2016. 2, 3

J. G. R. d. Souza, J. J. Ferreira, and V. Segura. A taxonomy of meth-
ods, tools, and approaches for enabling collaborative annotation. In
Proc. of IHC, pp. 1-12, 2023. 2

D. Stover and D. Bowman. Taggar: General-purpose task guidance
from natural language in augmented reality using vision-language
models. In Proc. of ACM SUI, pp. 1-12,2024. 1,2

H. A. Taylor and B. Tversky. Descriptions and depictions of environ-
ments. Memory & cognition, 20(5):483-496, 1992. 3

H. A. Taylor and B. Tversky. Perspective in spatial descriptions. Jour-
nal of memory and language, 35(3):371-391, 1996. 2, 3
TeamViewer. Teamviewer assist ar. https://vwww.
teamviewer.com/en-us/products/frontline/solutions/
remote-assistance, 2025. Sep. 3. 2025. 6

P. Wang, Y. Wang, Y. Wang, M. Billinghurst, D. Yang, H. Yang,
R. Luo, and X. Zhang. Extended reality remote collaboration sup-
porting visual annotation cues for industry: A literature review. Engi-

[69]

[70]

(71]
[72]

neered Science, 37:1802, 2025. 2

F. Zaman, C. Anslow, and T. J. Rhee. Vicarious: Context-aware view-
points selection for mixed reality collaboration. In Proc. of ACM
VRST, pp. 1-11,2023. 2

A. Y. Zhao, A. Gunturu, E. Y.-L. Do, and R. Suzuki. Guided reality:
Generating visually-enriched ar task guidance with llms and vision
models. arXiv preprint arXiv:2508.03547, 2025. 2,9

Zoom. Zoom. https://www.zoom.com/, 2025. Sep. 3. 2025. 3

W. D. Zulfikar, S. Chan, and P. Maes. Memoro: Using large language
models to realize a concise interface for real-time memory augmenta-
tion. In Proc. of ACM CHI, pp. 1-18, 2024. 3


https://learn.microsoft.com/en-us/dynamics365/mixed-reality/remote-assist/ra-overview
https://learn.microsoft.com/en-us/dynamics365/mixed-reality/remote-assist/ra-overview
https://learn.microsoft.com/en-us/dynamics365/mixed-reality/remote-assist/ra-overview
https://www.teamviewer.com/en-us/products/frontline/solutions/remote-assistance
https://www.teamviewer.com/en-us/products/frontline/solutions/remote-assistance
https://www.teamviewer.com/en-us/products/frontline/solutions/remote-assistance
https://www.zoom.com/

	Introduction
	Related Work
	Remote Assistance and Information Sharing
	Spatial Referencing in Spoken Language
	Multimodal Cues and Disambiguation
	Intelligent Grounding in XR
	Memory, Recall, and Situatedness

	Design of Speech-to-Spatial framework
	The Need for Referent Disambiguation in Speech
	Understanding the Language Pattern in Speech Guided Remote Assistance
	Study Setup and Procedure
	Findings and Implications

	Design Rationale
	System Implementation
	Remote Instruction Parsing and Attribute Extraction
	Object-centric Relational Graph Construction
	Referent Inference and Reasoning
	Capturing Interaction History
	Anchoring and Visualizing Indicator


	Use Cases and Applications
	Case Study 1: Speech-based Visual Annotation
	Case Study 2: Mapping the Speech to Visual Map
	Case Study 3: Disambiguating the Query-of-interest

	Evaluation
	User Evaluation: Quantifying the Impact
	Study Setup and Procedure
	Results

	System Evaluation: Gauging the Feasibility

	Limitations and Discussion
	Conclusion
	Data Privacy and Ethics

