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ABSTRACT 
Modeling touch pointing is essential to touchscreen interface 
development and research, as pointing is one of the most ba-
sic and common touch actions users perform on touchscreen 
devices. Finger-Fitts Law [4] revised the conventional Fitts’ 
law into a 1D (one-dimensional) pointing model for finger 
touch by explicitly accounting for the fat finger ambiguity 
(absolute error) problem which was unaccounted for in the 
original Fitts’ law. We generalize Finger-Fitts law to 2D touch 
pointing by solving two critical problems. First, we extend 
two of the most successful 2D Fitts law forms to accommodate 
finger ambiguity. Second, we discovered that using nominal 
target width and height is a conceptually simple yet effective 
approach for defining amplitude and directional constraints 
for 2D touch pointing across different movement directions. 
The evaluation shows our derived 2D Finger-Fitts law mod-
els can be both principled and powerful. Specifically, they 
outperformed the existing 2D Fitts’ laws, as measured by the 
regression coefficient and model selection information criteria 
(e.g., Akaike Information Criterion) considering the number 
of parameters. Finally, 2D Finger-Fitts laws also advance our 
understanding of touch pointing and thereby serve as the basis 
for touch interface designs. 

CCS Concepts 
•Human-centered computing → HCI theory, concepts and 
models; Pointing; 

Author Keywords 
Fitts’ law; finger input; pointing models 

INTRODUCTION 
Despite the widely recognized “fat finger” problem, finger-
touch based interaction has played a central role in the mo-
bile revolution of everyday computing and communication. 
Among a number of touch operations, pointing is one of the 
most basic and common actions. Because of its prevalence, 
modeling touch pointing is critical to touch interface design, 
development, and evaluation. The most widely known point-
ing model is Fitts’ law [7, 11, 25], which relates the pointing 
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movement time (MT ) to the relative precision of the tasks ( W
A ). 

Although Fitts’ law has been very successful for modeling 
mouse or stylus based pointing actions, it does not take the 
finger touch ambiguity problem into account and hence cannot 
accurately model touch-based pointing as is. 

Finger-Fitts law [4] revised Fitts’ law into a one dimensional 
pointing model by accounting for the fat finger ambiguity 
(absolute error caused by finger input) problem that arises 
in touch interaction. Recent research [2, 4, 24] has shown 
it is an useful extension and has been adopted for modeling 
and interface development. However, Finger-Fitts law is only 
dimensional, whereas most of the interface elements are two 
dimensional such as buttons and icons. There are both theo-
retical and practical needs for expanding Finger-Fitts law for 
modeling two dimensional pointing (2D). 

There are challenges that need to be resolved for modeling 
2D touch pointing. First, we need to develop and select the 
right model forms. Although the Fitts’ law literature [1, 26] 
has produced multiple 2D pointing models, none of them 
accommodate the absolute ambiguity of finger touch. Second, 
2D pointing is governed by both amplitude and directional 
constraints; the former is the constraint along the movement 
direction while the latter is the constraint perpendicular to 
the movement direction. How can the model define these two 
constraints from the screen coordinates of the target, especially 
when the movement direction does not align with either of the 
screen’s x or y direction? 

In this paper we generalize Finger-Fitts law to 2D touch point-
ing by resolving these two critical challenges. We first revise 
the two common 2D Fitts’ models – the Euclidean [1] and 
Smaller-Of models [26] – to accommodate the absolute am-
biguity of finger touch. The Finger-Fitts Euclidean model, 
which generalizes Fitts Euclidean model for touch pointing, is 
expressed as: 

r 
MT = a + b log2( ( √ A )2 + η( √ A )2 + 1). 

W 2−c2 H2−c2 

(1) 
where a,b,c, and η are empirically determined parameters. 

The Finger-Fitts Smaller-Of model, which generalizes Fitts 
Smaller-Of Model for touch pointing, is stated as: 

A
MT = a + b log2( p + 1). (2)

min(W,H)2 − c2 

where a,b, and c are empirically determined parameters. 
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Compared with the existing 2D Fitts’ models [1, 26], these 
two 2D Finger-Fitts models ( Equations 1 and 2) introduce a 
parameter (denoted by c2) to account for the variance caused 
by the absolute error of finger touch. 

Our evaluation showed that these 2D Finger-Fitts models sig-
nificantly improved the prediction accuracy for movement 
time compared to the existing 2D Fitts’ models [1, 26], as 
measured by regression coefficient and model selection infor-
mation criteria (AIC, BIC, and WAIC) metrics considering 
the number of parameters. Among all the models, Finger-Fitts 
Euclidean (Equation 1) performed the best. Adding more free 
parameters to it brings no further performance gain. In ad-
dition to creating new model forms, we investigate how to 
define the amplitude and directional constraints. We discover 
that it is effective to approximate amplitude and directional 
constraints with nominal target width and height defined in 
screen coordinates. 

RELATED WORK 
We review related work on (1) modeling touch pointing using 
Fitts’ law, and (2) modeling 2D pointing. 

Modeling touch pointing 
As finger touch has become the dominant input modality in mo-
bile computing, a sizable amount of research has been carried 
out to understand and model the uncertainty in touch interac-
tion. On a capacitive touchscreen, a touch point is converted 
from the contact region of the finger. This is an ambiguous and 
“noisy” procedure, which inevitably introduces errors. Factors 
such as finger angle [17, 18] and pressure [13] may affect the 
size and shape of the contact region, unintentionally altering 
the touch position. The lack of visual feedback on where the 
finger has landed due to occlusion (the “fat finger” problem) 
further exacerbates the issue [17, 18, 28, 29, 30]. As a result, 
it is hard to precisely control the touch position even with fine 
motor control ability. 

This “fat finger” problem, or the lack of absolute precision in 
finger touch, presented a challenge to use Fitts’ law as a model 
of finger touch-based pointing, because the only variable in 
Fitts’ law, namely Fitts’ index of difficulty, log2(A/W + 1), is 
solely determined by the relative movement precision, or the 
distance to target size ratio. 

Bi, Li and Zhai [4, 5, 6] identified this challenge, and proposed 
the Finger Fitts law [4] to address it. They derived their model 
by separating two sources of end point variance - those due 
to the absolute imprecision of finger touch (denoted by σa 

2) 
and those due to the speed-accuracy trade-off demonstrated in 
a pointing process (denoted by σr 

2). The end point variance 
caused by the imprecision of finger touch (σa 

2) is irrelevant 
to the speed-accuracy tradeoff that the traditional Fitts’ law 
models. They accounted for it by subtracting σa 

2 from the ob-
served variance σ2, which led to Finger-Fitts law (Equation 3).√ 
Following the notation of effective width We = 2πeσ (or 
4.133σ ) [9, 27, 31], Finger-Fitts law (Equation 3) can be 

re-expressed as Equation 4: 
� �A

MT = a + b log2 p + 1 (3)
2πe(σ2 − σa 

2) 
� �A 

= a + b log2 p + 1 , (4)
W 2 − 2πeσ2 

e a 

Later research [2, 4, 24] showed that Finger-Fitts law was 
useful in modeling various touch interactions. For example, 
research [2] showed it was more accurate than the typical 
Fitts’ law in estimating the upper bound of typing speed on a 
virtual keyboard. Researchers [24] extended the Finger-Fitts 
law to the crossing action with finger touch, which improved 
the model fitness (R2) from 0.75 to 0.84 over the original Fitts’ 
law. 

The underlying assumption behind Finger-Fitts law is that the 
absolute ambiguity caused by the input device (e.g., finger 
touch) should be separated when modeling pointing tasks. 
This assumption has later been generalized to model moving 
target selection [19, 20, 21], and to model target acquisition in 
VR/AR [32]. The generalized assumptions all led to improved 
modeling performance. Despite the success, Finger-Fitts law 
is limited as it is a 1D model. In this paper, we generalize it 
for 2D pointing. 

Modeling 2D pointing 
As one of the best known theoretical foundations of HCI, Fitts’ 
law [11, 25] has served as a cornerstone for interface and input 
device evaluation [7, 25], interface optimization [22, 23], and 
interaction behavior modeling [8]. 

As the majority of the graphical interfaces are two dimensional, 
a considerable amount of research has been conducted to ex-
tend Fitts’ law to 2D pointing. The very first study was carried 
out by Crossman [10]. He proposed that target height had a 
similar logarithmic effect on the pointing time (Equation 5). 
Although it was the first proposed model for 2D pointing, the 
additive nature of two indexes of difficulty, log2(A/W +1) and 
log2(A/H + 1), failed to reflect the interaction effect between 
target height and width: 

A A
MT = a + b log2( + 1)+ c · log2( + 1). (5)

W H 

MacKenzie and Buxton [26] studied bivariate pointing in the 
spirit of keeping the form of Fitts’ law, i.e., predicting the 
movement time using the ratio of distance to be covered and 
the target “extent”. Among the five candidates of target “ex-
tent”, they found the IDmin(W,H) model (referred to as the 
smaller-of model, Equation 6), which used the minimum width 
and height as the target “extent”, had the best correlation with 
the experimental data: 

A
MT = a + b log2( + 1). (6)

min(W, H) 

Accot and Zhai [1] used the notion of ` p norm to model bivari-
ate pointing with explicit amplitude and directional constraints 
(a.k.a, a Euclidean model). Their investigation led to their 
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model with one more free weight : 
r 

A A 
)2 + η( )2 + 1).MT = a + b log2( ( (7)

W H 

Unlike the previous research which viewed ID of a pointing 
task as a function of task variables such as A, W , and H, Gross-
man and Balakrishnan [15] proposed a different approach of 
predicting MT : firstly modeling the probability of landing end 
points within a target and then calculating the ID from such a 
probability. The MT is then predicted based on the estimated 
ID. 

In the present research, we adopted the approach of modeling 
ID as a function of task variables. To select the best model 
form we based the current 2D Finger-Fitts model development 
on both the smaller-of and Euclidean models: we revised them 
to account for the ambiguity caused by the finger touch. 

Previous research has also shown that it is not straightforward 
to properly define spatial constraints for 2D pointing. For 
example, previous work [1] identified that there were both 
amplitude (W ) and directional constraints (H) in 2D pointing. 
However, their research considered only horizontal and ver-
tical movement directions. We generalized Accot and Zhai’s 
model [1] to angled movement directions in this research. One 
option we investigated in this research is using apparent width 
and apparent height to define amplitude and direction con-
straint. Such an option was inspired by the apparent width 
idea in Fitts’ law research, though this option slightly under-
performed another option – using nominal width/height to 
approximate amplitude/direction constraint. 

Next, we describe how we generalize Finger-Fitts law to 2D 
pointing and how we tested it. 

TWO DIMENSIONAL FINGER-FITTS LAW 
There are two critical challenges for successfully modeling 2D 
touch pointing: (1) model form selection and (2) amplitude 
and directional constraint definition. We address them as 
follows. 

Model Form Selection 
We propose models for 2D touch pointing by extending the 
dual Gaussian distribution hypothesis [4] to the two most 
successful 2D Fitts’ model for cursor and stylus pointing: Eu-
clidean model (Equation 7) [1] and Smaller-Of model (Equa-
tion 6) [26]. 

The dual Gaussian distribution hypothesis is the assumption 
under which Finger-Fitts law was derived. It hypothesized that 
the observed variability in the touch point distribution (We 

2) is 
the sum of variables from dual independent sources: (a) the 
relative precision governed by the speed-accuracy tradeoff of 
human motor systems, and (b) the absolute precision governed 
by the uncertainty of finger touch (denoted by 2πeσa 

2). Under 
this assumption, the endpoint variability caused by source 
(a), which is related to the relative precision the movement 
follows, should be calculated as (W 2 − 2πe · σ2), becausee a 
W 2 is the sum of variabilities from sources (a) and (b), and e 
the variance from (b) is caused by the ambiguity of finger 

input and is independent from the movement. Therefore, it 
would be logically more sound to replace We in Fitts’ law with p

W 2 − 2πeeffective width with · σ2, because the latter more e a 
truly reflect the speed-accuracy tradeoff human motor system 
actually follows in the task. It means, that the variance caused 
by the finger touch ambiguity is taken away when modeling 
the movement. 

Here we extend the dual Gaussian distribution hypothesis to 
2D pointing. In 2D pointing, the endpoints have variability 
in two directions: (1) the direction parallel to the movement 
direction of the finger (i.e., W ), and (2) the direction per-
pendicular to the movement direction of the finger (i.e., H). 
We hypothesize that the absolute error of finger input has con-
tributed variance to both directions, and these variances should 
be subtracted when modeling the speed-accuracy tradeoff of 
human motor system. 

Finger-Fitts Euclidean Model 
Applying this hypothesis to the Fitts’ Euclidean model, we 
obtain the follows: r 

MT = a + b log2( ( √ A )2 + η( √ A )2 + 1). (8)
W 2−c2 H2−c2 

where c is an empirically determined parameter. We refer to 
Equation 8 as Finger-Fitts Euclidean model. 

Compared with the Fitts’ Euclidean model, Finger-Fitts Eu-
clidean model replaces W with 

√ 
W 2 − c2, where c2 represents 

the absolute variance caused by finger touch along the direc-
tion of W (the direction parallel to the movement of the finger).√ 
The physical meaning of W 2 − c2 is that by taking away the 
absolute variance caused by finger touch, the remaining value 
would more truly reflect the speed-accuracy tradeoff human 
motor system actually follows. In other words, it means the 
absolute variance caused by the ambiguity of finger touch is 
independent from the movement and should be subtracted. It 
also means that, to attain a given level of accuracy, the sub-
ject would have to aim at a higher level, because touch input 
introduces a certain amount of noise (represented by c2). We 
also applied the same principle to the direction perpendicular 
to the movement of the finger (i.e., H), and replace H with√ 

H2 − c2. 

Equation 9 shows a variant of Finger-Fitts Euclidean model, 
which assumes the absolute variances in W and H directions 
are different: r 

MT = a + b log2( ( √ A )2 + η( √ A )2 + 1). (9)
W 2−c2 H2−d2 

where c, and d are empirically determined parameters. Equa-
tion 9 is the more complete version of 2D Finger-Fitts Eu-
clidean model, and Equation 8 is a simplified one. The com-
plete model increases the fitting flexibility, but adds one extra 
parameter. 

We also made the following two further simplifications over 
the original Finger-Fitts law. First, we use the nominal target 
width W , rather than the effective width We. This assumes 
that participants respect the spatial constraint set by the task 
parameters. Second, instead of assuming the absolute finger 
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touch variance is a pre-defined constant across tasks (denoted 
by σ2 in Finger-Fitts law), we let it be an empirically deter-a 
mined parameter from the task (denoted by c2 in Equation 8). 
The assumption here is that the absolute error caused by finger 
varies in different task contexts. Thus it would be logically 
more sound to determine it from the empirical data. 

The Finger-Fitts Euclidean models are expansions of the Fitts’ 
Euclidean model which can be viewed as a special case where 
c2 ≈ 0 and d2 ≈ 0. It indicates that the input device is accurate 
enough and the variance caused by it is negligible (near 0). 
This could happen in mouse or stylus input. 

Finger-Fitts Smaller-Of Model 
We also follow a similar approach to extend another widely 
used 2D pointing model, the smaller-of model [26] for touch 
pointing. We assume that the absolute ambiguity of finger 
touch cause variance in endpoint distribution, and such amount 
of variance should be accounted for by subsracting it from 
min(W,H)2, which is the counterpart of We in the smaller-of 
model. This assumption leads to the Finger-Fitts Smaller-Of 
model: 

A
MT = a + b · log2( p + 1). (10)

min(W,H)2 − c2 

where a, b, and c are empirically determined parameters, and 
c2 accounts for the noise or input uncertainty caused by finger 
touch. 

In sum, Equations 8, 9, and 10 are three model candidates 
for 2D touch pointing. We have derived them by building 
the absolute error of finger touch into the most successful 2D 
pointing models for desktop interaction [1, 26]. 

Defining amplitude (W ) and directional (H) constraints 
Another key challenge of modeling 2D pointing is to appropri-
ately determine the amplitude (W ) and directional constraints 
(H) [1], which are defined as: 

• Amplitude Constraint (W ): it is the constraint along the 
movement direction of the finger, specifying how wide the 
end point spread can be along the movement direction. 

• Directional Constraint (H): it is the constraint perpendicular 
to the movement direction of the finger, specifying to what 
degree the end point can deviate from the travel direction. 
In other words, it specifies how wide the end point spread 
can be perpendicular to the finger travel direction. 

To avoid confusion, we refer to the nominal width of a rect-
angular target as x-length, and the nominal height as y-length. 
The x-length of a rectangle as the length of the side parallel to 
the x direction on the device screen which is normally parallel 
to the human body (i.e., left/right direction), and y-length as 
the length of the side parallel to the y direction on tablet (i.e., 
up/down direction). The x− and y− lengths are defined in the 
screen coordinate system, while the amplitude (W ) and direc-
tional H constraints are defined in the movement coordinate 
system. 

Figure 1: A illustration of option 1: using nominal width (x-length) and 
height (y-length) to define amplitude (W ) and directional (H) constraints. 
(a): in vertical movement direction, y-length is W and x-length is H. (b): 
in horizontal movement direction, x-length is W and y-length is H. (c): 
in angled movement direction, if the direction falls within the grey area, 
x-length is W and y-length is H; if the direction is within the white area, 
y-length is W and x-length is H. 

W and H for vertical and horizontal movements 
Both amplitude and directional constraints are well defined 
for horizontal and vertical movements. For example, if a user 
moves the finger horizontally (along the x-axis) to select a 
20mm (x-length) × 10mm (y-length) rectangle, the 20mm x-
length is the amplitude constraint and the 10 mm y-length is the 
directional constraint. In contrast, if the user moves the finger 
vertically (along the y-axis) to select the target, amplitude and 
directional constraints are swapped for the identical target: the 
amplitude constraint is 10mm and the directional constraint is 
20mm. 

W and H for angled movements 
However, it is a challenge for defining W and H for an angled 
movement, which referred to movement directions that are 
not horizontal or vertical. Because both x-length and y-length 
may contribute to the amplitude and directional constraints, as 
shown in Figure 1, the question is how they should be defined. 

We explored 2 options for defining amplitude and direction 
constraints for angled movement directions: 

• Option 1: Nominal Width and Height. As shown in Fig-
ure 1, this method uses nominal width (x-length) and height 
(y-length) of a target to approximate W and H. If θ fell 
within the ranges of [0°, 45°], [135°, 225°], [315°, 360°] 
x-length served as amplitude constraint and y-length served 
as the directional constraint. If θ was with [45°, 135°] and 
[225°, 315°], y-length was the amplitude while x-length was 
the directional constraint. This method essentially simpli-
fies angled conditions to their nearest vertical or horizontal 
conditions, using either nominal width (x-length) or nomi-
nal height (y-length) as amplitude or directional constraints 
according to the movement angles. 
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Figure 2: A illustration of option 2: using apparent width (in blue) and 
height (in green) to define amplitude (W ) and directional (H) constraints. 

• Option 2: Apparent Width and Height. As shown in Fig-
ure 2, this method uses the apparent widths and heights 
as amplitude and directional constraints. We first draw a 
straight line connecting the center of starting rectangle to 
the target rectangle. The apparent width is the length of the 
line segment intersected within the target. We then draw 
another straight line crossing the center of the target and 
perpendicular to the movement direction. The length of the 
line segment intersected within the target is the apparent 
height. 

After creating model forms and methods for defining W and 
H, we carried out a user study to evaluate them. 

EVALUATION IN 2D POINTING TASKS 
We conducted a rectangular target acquisition experiment to 
evaluate the three proposed 2D Finger-Fitts pointing models, 
and the two options of deciding W and H in a 2D rectangular 
targets pointing task. 

Participants and Apparatus 
We recruited 18 participants (8 females) aged from 21 to 29 
(mean: 24.89, std: 2). All were right-handed. The participants 
performed tasks on a Android Pixel C Tablet with Android 
API 27. The tablet was 211 mm wide and 148 mm high. 
Throughout the entire experiment, the device was fixed in the 
landscape orientation and placed on a table. 

Design 
The study followed a within-subject factorial design. The 
independent variables were distance (A) between target cen-
ters, x-length and y-length of a rectangular target, and pointing 
direction(θ ). There were 3 different A: 36, 54 and 80mm. Sim-
ilar to the previous 2D pointing study [1], our experiment had 
3 basic x-length and y-length values (4, 8 and 10 mm) along 
with 4 x-length and y-length ratios (1, 1.5, 2, 2.5). Sixteen dif-
ferent pointing direction were also considered (0◦ , 22.5◦ , 45◦ , 
67.5◦ , 90◦ , 112.5◦ , 135◦ , 157.5◦ , 180◦ , 202.5◦ , 225◦ , 247.5◦ , 
270◦ , 292.5◦ , 315◦, and 337.5◦ ). There were in total 1008 x-
length × y-length × distance × angle combinations as shown 
in Table 1. 

Procedure 
We designed a reciprocal target acquisition task. Each partic-
ipant placed the tablet on the table and selected the targets 
using the index finger of their dominant hands. In each trial 
(Figure 4), two rectangles were displayed on the screen with 
a randomly chosen x-length × y-length × distance × angle 

Distance (A mm) 36, 54, 80 

x-length = y-length (mm) (4, 4), (8, 8), (10, 10) 

(4, 6), (4, 8), (4, 10), 
x-length < y-length (mm) (8, 12), (8, 16), (8, 20), 

(10, 15), (10, 20), (10, 25) 

(6, 4), (8, 4), (10, 4), 
x-length > y-length (mm) (12, 8), (16, 8), (20, 8), 

(15, 10), (20, 10), (25, 10) 

0, 22.5, 45, 67.5, 
90, 112.5, 135, 157.5,Angle (θ ◦) 180, 202.5, 225, 247.5, 
270, 292.5, 315, 337.5 

Table 1: Distance (A), target sizes (x-length and y-length), and movement 
directions (θ ) in experiment. 

Figure 3: An illustration of experimental setting. The dotted circles show 
3 possible movement distances (A). θ is the angle between movement di-
rection and the x-axis of the screen coordinate system. The blue rectan-
gle is the starting rectangle and the red rectangle is the target. 

combination from the experimental conditions. The combi-
nations showed up in random order for each participant. We 
defined a trial as a target acquisition action. At the beginning 
of each trial, the starting rectangle was in light blue and the 
target rectangle was in light red. A participant was instructed 
to select the starting rectangle to start the trial. Upon suc-
cessfully selecting the starting rectangle, the target rectangle 
changed to light blue, and the participant was instructed to 
select the target rectangle as quickly and accurately as pos-
sible. If the participant failed to select the target (the touch 
point fell outside the target), a failure sound was played and 
she/he would repeat the trial until the selection was successful. 
If the selection was successful, a success sound was played, 
and the previous starting rectangle became the target. The 
participant then moved the finger to select the target, which 
was considered the next trial. 

Because a reciprocal target selection task included two move-
ment angles (e.g., a horizontal reciprocal target selection task 
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included both 0◦ and 180◦ angles), the 1008 x-length × y-
length × distance × angle combinations formed 504 recipro-
cal target selection tasks. After the participant successfully 
performed a reciprocal target selection a task 6 times, a new 
reciprocal target selection task was randomly selected and 
displayed and the participant moved on to the next trials. 

The experiment collected 59,427 target selection trials in total. 
We considered the trails in which the touch points fell beyond 
3 std as outliers. After removing the outliers (1.08% of total 
trials), we had 58,785 trials. There were 54,432 success trials: 
504 (reciprocal tasks) × 6 (success trials in a task) × 18 
(participants) = 54,432 (success trials). The average error rate 
was 7.4%, which was the percentage of the failed trials. 

Figure 4: Left: a participant in the study. Right: a screenshot of the 
task. 

Results 
Although our main focus was to model movement time MT , 
we first examined the pointing performance measured by 
movement time and error rates in different conditions (by 
x-length, y-length, and A). The movement time MT is defined 
as the duration between the moment the finger lifted from the 
starting rectangle and the moment the finger landed on the tar-
get rectangle. The error rate was the percentage of trials where 
touch points landed outside the target. MT (s) and error rates 
by x-length, y-length and A are shown in Table 2. As x-length 
(or y-length) decreased, or A increased, MT increased. 

Model candidates 
We evaluated the following five candidates for modeling MT : 

• Fitts’ Euclidean Model (Equation 7). It is an Euclidean 
model with one free weight, a successful 2D pointing model 
for mouse and stylus pointing. 

• Finger-Fitts Euclidean Simplied Model (Equation 8). As 
previously described, it built the absolute error of finger 
touch (denoted by c2) into the Fitts’ Euclidean model. 

• Finger-Fitts Euclidean Complete Model (Equation 9). As 
previously described, it introduced two extra parameters 
(i.e., c2 and d2) into the Fitts’ Euclidean model. 

• Fitts’ Smaller-Of Model (Equation 6). It was another widely 
used 2D pointing model for mouse and stylus pointing, 
which uses min(W,H) in lieu of W in Fitts’ law. 

• Finger-Fitts Smaller-Of Model (Equation 10). It was an 
extension of Fitts’ Smaller-Of model, which built the ab-
solute error of finger touch (denoted by c2) into the Fitts 
Smaller-Of model. 

x-length 
MT 

Mean (SD) 
Error 

4 0.59(0.16) 17.0% 

6 0.58(0.15) 13.8% 

8 0.43(0.12) 6.4% 

10 0.40(0.13) 4.9% 

12 0.38(0.12) 3.0% 

15 0.33(0.10) 1.3% 

16 0.36(0.15) 2.3% 

20 0.33(0.13) 2.3% 

25 0.31(0.11) 1.4% 

y-length 
MT 

Mean (SD) 
Error 

4 0.58(0.17) 15.0% 

6 0.59(0.16) 16.2% 

8 0.42(0.13) 6.1% 

10 0.39(0.11) 4.9% 

12 0.40(0.11) 3.6% 

15 0.36(0.10) 3.1% 

16 0.39(0.11) 4.5% 

20 0.38(0.13) 4.2% 

25 0.35(0.11) 2.0% 

Distance A MT Mean (SD) Error Rate 

36 0.38(0.12) 8.2% 

54 0.43(0.13) 7.1% 

80 0.52(0.14) 7.3% 

Table 2: Movement time (s) and error rate by x-length, y-length, and A 
(mm) 

Besides evaluating different models, we also compared two 
approaches to defining amplitude (W ) and directional (H) 
constraints, as described in the previous section: 

• Nominal Width and Height. As previously described, it 
uses nominal target width (x-length) and height (y-length) 
to approximate W and H (Figure 1). 

• Apparent Width and Height. As previously described, it de-
fines W along the movement direction and H perpendicular 
to the movement direction (Figure 2) 

In sum, we evaluated 5 model candidates × 2 W and H defini-
tion options. 

Model Evaluation 
We grouped trials by width × height × distance × angle, 
resulting in 504 groups. We then obtained the mean movement 
time (MT ) of each group. These 504 MT means were data 
in our model evaluation. By a least-squares fit method, we 
estimated the parameters of the 5 model candidates, using two 
W and H definition methods separately. 

Nominal Width(Height) vs. Apparent Width(Height) 
We first compared the two W and H definition methods by 
examining the coefficient of determination (R2) across all the 
five model candidates. 

As shown in Table 3, using nominal width and height out-
performs using apparent width and height in all the model 
candidates. The former led to a higher R2 for every model. Us-
ing nominal width and height is also simple, straightforward, 
and easy for implementation. The rest of the data analysis was 
based on this W and H definition approach. 

Model Comparision 
Figure 5 and Table 4 show the regression results by ID for all 
of the 5 models. The two Finger-Fitts Euclidean models had 
the best fitting results, with R2 = 0.943 and R2 = 0.944. The 
Finger-Fitts Smaller-Of model also outperformed the Fitts’ 
Smaller-Of model, with R2 = 0.915. 
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Figure 5: MT vs. ID regressions for 5 model candidates. As shown, the Finger-Fitts Euclidean Simplified model (d) performed the best, and all the 2D 
Finger-Fitts models (b, d, and e) outperform their counterparts 2D Fitts’ models (a [26] and c [1]). 

Model R2 RMSE AIC WAIC BIC Parameters 

Smaller-Of 
a) Fitts 

b) Finger-Fitts 

0.886 

0.915 

0.041 

0.036 

-2697.94 

-2842.04 

-2716 

-2860.49 

-2689.49 

-2829.37 

a=-0.126, b=0.177 

a=-0.035,b=0.138,c2=9.213 

c) Fitts 0.914 0.036 -2839.5 -2857.76 -2826.83 a=-0.150,b=0.175,η=0.960 

Euclidean d) Finger-Fitts Simplified 0.943 0.029 -3044.95 -3063.56 -3028.06 a=-0.060,b=0.138,c2=9.634,η=0.967 

e) Finger-Fitts Complete 0.944 0.029 -3045.08 -3064.17 -3023.95 a=-0.058,b=0.138,c2=9.164,d2=9.999, 
η=0.897 

Table 4: Model parameters and evaluation results of 5 model cadidates. Information criteria (AIC, BIC, and WAIC) measure prediction 
accuracy after taking into account model complexity. The smaller the value, the better a model. 

R2 of Using Nominal R2 of Using ApparentModel Width & Height Width & Height 

Smaller-Of 
Fitts’ 

Finger-Fitts 

0.886 

0.915 

0.834 

0.848 

Fitts’ 0.914 0.898 

Euclidean Finger-Fitts 
Simplified 

Finger-Fitts 

0.943 

0.944 

0.914 

0.915 Complete 

Table 3: Coefficient of determination (R2) of 5 model candidates with 2 
W and H definition methods. 

Cross validation. To maintain external validity of the analysis, 
we also examine the leave-one-out Root Mean Square Error 

(RMSE) for each model on the mean movement time. As 
shown in Table 4, the results were consistent with R2 values. 
For both Euclidean and Smaller-Of models, the Finger-Fitts 
versions outperformed their standard Fitts’ law model counter-
part. 

Information Criteria. Additionally, we also examined the 
Information criteria, which are commonly used metrics for 
model selection because (1) they reflect the relative quality of 
a model, and (2) they take into account the complexity of the 
model (i.e., the number of parameters). Some information cri-
teria such as Akaike information criterion (AIC) approximates 
the amount of information lost with a model. Other commonly 
used information criteria include Watanabe–Akaike informa-
tion criterion (WAIC), and Bayesian Information Criterion 
(BIC). Each of these three criteria penalizes the complexity 
of a model to various degrees: AIC has the least while BIC 
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has the most severe penalties. Quantitatively, the smaller the 
information criterion value, the better the model is. 

The information criteria results are displayed in Table 4. The 
results were consistent with R2 and RMSE. The Finger-Fitts 
models have smaller values than their Fitts’ counterpart in 
each of the three information criteria, confirming that the 
Finger-Fitts 2D models outperformed the Fitts’ version. 

Likelihood Ration Test (LRT). We carried out LRT to exam-
ine whether the prediction improvements of Finger-Fitts 2D 
models are significant compared with their Fitts’ counterparts. 
LRT is often used to compare multiple models if one of them is 
a constrained version (or nested) of another. Our comparision 
fell within this category. The Fitts’ Smaller-Of model can be 
considered as a constrained version of Finger-Fitts Smaller-of 
in which c = 0; the Fitts’ Euclidean model is a constrained 
version of Finger-Fitts Euclidean where c = 0 and d = 0. 
The LRT tests showed p < 0.001 for Finger-Fitts Smaller-
Of vs. Fitts’ Smaller-of(χ2(1) = 145.82), for Finger-Fitts 
Euclidean Simplified vs. Fitts’ Euclidean (χ2(1) = 207.8), 
and for Finger-Fitts Euclidean Complete vs. Fitts’ Euclidean 
(χ2(2) = 208.46). However, no significant difference was ob-
served for Finger-Fitts Euclidean Simplified vs. Finger-Fitts 
Euclidean Complete (χ2(1) = 1.3816, p = 0.24). 

DISCUSSION 

Model Selection 
Finger-Fitts Euclidean Simplified model performed the best 
among all the candidates. Its R2 is 0.943, almost the same 
with the Finger-Fitts Euclidean Complete model which in-
troduced one more extra parameter. Its prediction accuracy 
measured by information criteria is also stronger than other 
models. Comparing the three Euclidean models, the results 
showed introducing one parameter c2 leads to a great fitness 
gain, increasing R2 from 0.914 to 0.943, while further introduc-
ing another parameter d2 does not improve the model fitness. 
The results suggested Finger-Fitts Euclidean Simplified model 
(Equation 8) as the extension of Euclidean model for 2D touch 
pointing. 

Finger-Fitts Smaller-Of model also improved the fitness per-
formance over the original Smaller-Of model. It improved R2 

from 0.886 to 0.915; information criteria also showed predic-
tion accuracy improvement and LRT showed the improvement 
was statistically significant. It could serve as a simplified 
version of 2D touch pointing model. 

Overall, the results showed that subtracting the absolute vari-
ance caused by finger touch (denoted by c2) is effective in 
improving 2D pointing model fitness. It has led to improved 
model for both Euclidean model and Smaller-Of model. 

Defining amplitude W and directional H constraints. 
The results showed using nominal width and height outper-
forms using apparent width and height, across all the model 
candidates. Additionally, using nominal width and height is 
a conceptually simpler approach. We recommend using this 
approach to define W and H in modeling 2D touch pointing. 

Explaining Violation of Scale-Independence 
The Fitts’ law predicts that the pointing performance is scale-
independent: the MT is determined by the ratio of W

A and is in-
dependent from the absolute value of A or W . However, previ-
ous research [16] has shown that this scale-independence claim 
is inconsistent with empirical data for mouse-based pointing 
tasks. The touchscreen users’ experience has shown that touch 
pointing performance is also no longer scale-independent. For 
example, empirical evidence shows that typing on a smaller 
keyboard is harder even if the ratio A remains the same asW 
that on a large keyboard. Studies [3, 14] showed that the input 
speed decreased from 40 Word Per Minute (WPM) on a phone-
sized keyboard to 22 WPM on a watch-sized keyboard, even 
with the help of modern predictive and statistical decoding 
primed on modeling language regularities. 

The 2D Finger-Fitts models provide a mathematical explana-
tion for the violation of scale-independence in touch pointing. 
The Finger-Fitts Euclidean Simplified model shows that given 
a constant A , and A ratio, a greater W and H lead to better per-W H 
formance, which contradicts the Fitts’ law scale-independence 

Aprediction that the same and A lead to the same perfor-W H 
mance. Below is a detailed explanation. 

Fitts’ law predicts that when A, W , and H decrease or in-
crease proportionally, ID will remain unchanged because the 
decrease/increase in A and W (or H) will not cancel each 
other out. However, introducing c2 to the denominator of ID 
alters this scale-independent relationship. The Finger-Fitts Eu-
clidean Simplified model predicts that proportionally increas-
ing A, W , and H will reduce ID. Here is a simple mathematical 
demonstration. 

Finger-Fitts Euclidean model has defined the index of diffi-
culty of task (ID) as: 

s 
A A 

)2 + η( √ )2 + 1).ID = log2( ( √ (11)
W 2 − c2 H2 − c2 

Assuming the movement distance A, target width W , and target 
height H proportionally increase to A0 = αA, W 0 = αW , and 
H 0 = αH with α > 1, the index of difficulty (ID0) becomes: 

s 
A0 A0 

ID0 = log2( ( p )2 + η( p )2 + 1) (12) 
W 02 − c2 H 02 − c2 

We obtain the following relationship with a simple math deriva-
tion: 

A0 αA αA A p = q < √ = √ 
W 02 − c2 W 2 − c 

�2 α W 2 − c2 W 2 − c2
α 

α 
(13) 

Similarly, we have: 

A0 A p < √ (14) 
H 02 − c2 H2 − c2 

Session 10B: Interaction Models
 

UIST '20, October 20–23, 2020, Virtual Event, USA

865



 
 

  
         

   
 

   
 

   
 

   
   

 
 

 
             

 

  

          
 

 

   

       

       
      

 
 

       
     

 
 

       
     

 
 

      
       

  
 

     
       

  
 

  
 

       
     

 
 

     
  

   
    

Plugging Inequations 13 and 14 into Equation 12 and assum-
ing η is positive, we have: 

s 
A0 A0 

ID0 = log2( ( p )2 + η( p )2 + 1) (15) 
W 02 − c2 H 02 − c2 

s 

)2 + η( √< log2( ( √ 
A A 

)2 + 1) = ID 
W 2 − c2 H2 − c2 

(16) 

Inequation 16 shows that proportionally increasing A, W , and 
H will reduce ID, leading to shorter movement time. Such 
a finding is consistent with the touchscreen interface design 
guideline that target sizes should be above a pre-defined lower-
bound (e.g., 48 dp in Android [12]) to ensure satisfying point-
ing performance. 

CONCLUSION 
We proposed 2D Finger-Fitts models, which extend Finger-
Fitts law to bivariate touch pointing: 

r 
MT = a + b log2( ( √ A )2 + η( √ A )2 + 1). 

W 2−c2 H2−c2 

(17) 
where a,b,c, and η are empirically determined parameters. A 
simplified version is: 

A
MT = a + b · log2( p + 1). (18)

min(W,H)2 − c2 

where a, b, and c are empirically determined parameters. The 
2D Finger-Fitts models account for the ambiguity of finger 
touch by subtracting components representing the variance 
caused by touch ambiguity (represented by c2). 

Our evaluation shows 2D Finger-Fitts law can predict the 
movement time in bivariate pointing tasks well, and outper-
form the existing 2D pointing models including the Fitts’ Eu-
clidean [1] and Smaller-Of models [26] originally proposed 
for desktop pointing by two measures together. The first mea-
sure is the coefficient of determination (R2) and second is 
information criteria which factors in model complexity. The 
2D Finger-Fitts Euclidean model (Equation 17)’s performance 
is nearly saturated as adding more free parameters bring no 
performance gain. Our investigation also shows using nominal 
target width and height is a convenient yet effective approach 
for defining amplitude and directional constraints of 2D finger 
touch pointing. 
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